

15 Tex. Intell. Prop. L.J. 157

Texas Intellectual Property Law Journal
Winter 2007

Article

OPEN SOURCE, FREE SOFTWARE, AND CONTRACTUAL ISSUES

Dr. José J. González de Alaiza Cardonaa1

Copyright (c) 2007 State Bar of Texas, Intellectual Property Law Section; Dr. José J. González de Alaiza Cardona

Table of Contents

I.

Introduction

159

II.

General Part

159

 A. Open Source Numbers

159

 B. Technical Concepts

162

 C. Historic Overview

165

 D. Free Software Foundations and Perspectives

170

 1. Introduction

170

 2. Definition

170

 3. Moral Foundations

171

 4. Legal Approach

173

 5. Software Development

174

 6. Economic Models

177

 E. Free Software v. Open Source Software

178

 1. Introduction

178

 2. Terminology

179

 3. Definitions

181

 4. Philosophy

183

 5. Representative Licenses: GNU GPL v. BSD License

184

 6. Conclusions 184

III.

Contractual Issues

185

 A. Introduction

185

 B. Contract v. License

186

 1. Relevance of the Discussion

186

 2. Conceptual Approach

188

 3. The Dual Solution

190

 C. Consideration

193

 1. Introduction

193

 2. Definition

193

 3. Peppercorn Theory

193

 4. Consideration in Copyleft Software Licenses

194

 D. Clickwrap and Shrinkwrap Agreements

194

 1. Introduction

194

 2. Shrinkwrap and Clickwrap Licenses in the Courts

195

 3. Enforceability of Copyleft Licenses as Shrinkwrap or Clickwrap Contracts

199

 4. Unenforceability of Copyleft Licenses as Shrinkwrap or Clickwrap Contracts

201

 E. Privity

202

 1. Introduction

202

 2. Privity Concerns in Copyleft Software Licenses

202

 3. Relativization of Privity Concerns in Copyleft Software Licenses

203

 F. Warranty Disclaimer

204

 1. Introduction

204

 2. Merchants

204

 3. Non-Merchants

206

 G. Copyright v. Contract

207

 1. Introduction

207

 2. Preemption

207

 3. Deviations of the Copyleft Licenses from the Copyright Language 209

IV.

Conclusion

209

*159 I. Introduction

“Free software” is an increasingly used method of licensing computer programs, which on the one hand gives users the rights
to use, modify, and redistribute the program; and, on the other, forces any person redistributing an original or modified
version of the program to license it with the same rights. Such a forced obligation is introduced through the “copyleft clause”
and uses copyright in a creative way to achieve freedom instead of control.

This paper discusses free software foundations and contractual issues. The discussion is structured in two main parts and a
conclusion. In Part II, the emergence of free software and its implications in different fields will be exposed. I will seek to
explain how the copyleft clause affects the ways in which software is developed and distributed. Moreover, I will explain the
common points and differences between free software and “open source software.”

In Part III, the contractual issues raised by the peculiarity of the copyleft clause will be addressed. I will argue that the license
agreement which contains the copyleft clause is not a mere non-contractual copyright license, but a contract. This argument
triggers a number of contract-related questions which I will seek to resolve from the U.S. perspective. In particular, I will
address concerns about lack of consideration; validity of clickwrap and shrinkwrap licenses; possible consequences of lack of
privity between licensor and licensee; the enforceability of the warranty disclaimer included in most copyleft licenses; and
the relation between copyright and contractual provisions.

Finally, the paper will summarize the main conclusions drawn in the two parts mentioned above.

II. General Part

A. Open Source Numbers

The terms free software and “open source” F1 are now as familiar to every computer user as “mouse,” “keyboard,” or
“laptop.” More importantly, the use of open source software is widespread in different fields.F2 Its success is particularly
*160 remarkable on the Internet. For example: almost 70% of web servers3 are run by Apache,4 a well known open source
software package; a vast majority5 of the domain name servers (DNS)6 use BIND,7 another open source software package; the
Firefox browser counts over 150 million downloads8 and the email client Thunderbird reported over one million downloads
in the ten days following its release on December 7, 2004.9 *161 Beyond the Internet, open source software is often used to
control electronic devices, from antilock brakes to watches to consumer electronics (i.e., mobile phones, PDAs and TV
set-top boxes) to medical equipment, etc.10

A third area where the use of open source software is increasing, but only has a moderate market share, is software for
desktop computers.11 This is true for both operating systems and applications.12 In relation to the former, GNU/Linux claims
around 29 million users,13 far behind the numbers of the non-open source operating systems provided by Microsoft, i.e., the
Windows family (Windows XP, Windows Me, Windows 2000, etc.).14 Among the most popular open source applications are
OpenOffice15 and MySQL,16 which also occupy a very small market share in comparison with Microsoft Office.17

*162 Increased use of open source software will depend mainly on the support offered by major companies with the power to
influence the technological market. On the one hand, Microsoft’s fight against the open source movement is well known.18
On the other hand, a fair number of large companies, such as IBM, Intel, Hewlett-Packard, Oracle, SAP, Sun Microsystems,
Dell, Motorola, and Sony are supporting this movement.19 Another decisive factor in the success of open source will be the
attitude of public institutions. So far, the governments of Argentina, Australia, Brazil, China, Denmark, France, Germany,
India, Korea, Japan, Peru, the United States, and even the United Nations have either adopted initiatives or are already using
open source software.20

B. Technical Concepts

Understanding the legal issues related to open source software requires some basic knowledge about computer programming.
First, hardware and software must be distinguished. “In information technology, hardware is the physical aspect of
computers, telecommunications, and other devices. The term arose as a way to distinguish the ‘box’ and the electronic
circuitry and components of a computer from the program you put in it to make it do things.”21

Software is a general term for the various kinds of programs used to operate computers and related devices. . . . Software can
be thought of as the variable part of a computer and hardware the invariable part. Software is often divided into application
software *163 (programs that do work users are directly interested in) and system software (which includes operating
systems and any program that supports application software).22

This paper will focus on the legal aspects of exploiting software as open source. But what does “open source” mean?

The source code consists of the programming statements that are created by a programmer with a text editor23 or a visual
programming tool and then saved in a file. For example, a programmer using the C language24 types in a desired sequence of
C language statements using a text editor and then saves them as a named file. This file is said to contain the source code.25

The source code can be read and modified by other programmers. However, a computer does not understand these
instructions.

To convert the source code into something readable by the computer, the programmer uses a compiler, which is a “special
program that processes statements written in a particular programming language and turns them into machine language or
‘code’ that a computer’s processor uses.”26 The resulting output, the compiled file, is known as machine code or object code.27
In contrast to the source code, the object code file contains a sequence of instructions that the processor can understand or
execute but that is almost impossible for a human to read because it consists entirely of numbers. In short, “[s]ource code is
what programmers write; object code is what computers run.”28

*164 In some legal articles, the relationship between source code and object code has been analogized to that between a
recipe and a dish. The source code is like a recipe, which one cannot eat, but allows one to cook the dish.29 On the other hand,
if one has only the dish, you may enjoy it, but not improve it, because of the lack of knowledge about its ingredients and
quantities.

In the vast majority of purchases and any other acquisitions of software, the object code is delivered without the source code.
That may mean little for the typical user, who is only interested in running the program and would not even know what to do
with the source code. However, it is easy to realize that if the source code were released, a small number of users who are
computer experts could customize or improve the program.30

Finally, it may be asked if it is possible to extract the source code from the object code. The answer is in the affirmative, and
this can be done through decompilation.31 However, this process implicates certain technical and legal issues. First, the
decompilation of object code into source code is not a straightforward process; on the contrary, it may fail for various
reasons.32 Moreover, a successful decompilation does not provide us with the original source code, but only with a source
code which is functionally equivalent to the original33 and usually much more difficult to maintain. Second, decompilation
involves reproductions of the decompiled computer program, or parts of it, and often circumvention of
technological-protection measures.34 Both will most certainly violate intellectual property laws. Although most countries
provide exceptions for reverse engineering and, therefore, for decompilation, such exceptions are only applicable under
certain circumstances. Basically, this action has to be undertaken *165 to obtain the information necessary to achieve the
interoperability of an independently-created computer program with other programs.35

C. Historic Overview

In the 1960s the distinction between hardware and software was not as clear as it is today. The first computers were designed
to perform one or a few specific tasks. Early programs were designed by machine manufacturers to be used in conjunction
with a specific computer model or individual machine.36 The users of computers were mainly companies and governmental
institutions, which purchased the hardware and received the software as part of the deal.37 The business model of selling the
software did not exist as such.38 In this scenario, the producers of software usually delivered the program with its source code,
because they did not have any interest in hiding it. Moreover, users and computer scientists used to share the source codes of

the programs without limitations.39

For these reasons, it has been claimed that free software preceded the distribution of software as a protected work.40 That may
have been the situation de facto, but it cannot be stated that users had a right to reproduce the programs or to access the
source code without the authorization of the author or producer. It is true that the kind of legal protection deserved by
computer programs was still unclear at the time,41 but even at a very preliminary stage, the consensus was that computer
programs were somehow protectable.42

*166 The distribution of computer programs independent from a particular machine began to gradually increase.43 And
because the production cost of a program was, and is still today, far beyond that of making copies of the program, a certain
legal standard had to be achieved.

In 1980 the U.S. amended the Copyright Act extending its protection to computer programs.44 This decision probably
influenced Japan and the European Union45 to take steps in the same direction. Finally during the 1990s, WTO46 and WIPO,47
the international organizations regulating copyright issues, agreed on the protection of computer programs under copyright
law.

*167 At the same time, software developers stopped delivering computer programs in source code. In their view, the
exclusive distribution of the object code has two advantages: first, the product is more appealing for the standard,
non-sophisticated software users; and second, it protects the source code from disclosure and therefore, from a possible
modification.48

As a reaction against the distribution of computer programs in object code, Richard Stallman founded in 1985 the Free
Software Foundation,49 which has since then coordinated the efforts of the free software movement.50 Stallman, who
developed operating systems as a researcher at the Massachusetts Institute of Technology (MIT) Artificial Intelligence (AI)
Lab, greatly disliked not only the new ways of distributing software but also the transformation in the ways of producing it.51
Now software developers have to sign a nondisclosure agreement to get access to the software, even as object code.52

Stallman advocates that no one should have to pay for software53 and that access to the source code should be granted.54 If a
different system governs the production and distribution of software, a few people would dominate computing.55 Stallman
compares his free software system with a non-free or proprietary software system and considers the latter antisocial.56 In
opposition to free software, the proprietary software is characterized by the fact that “[i]ts use, redistribution or *168
modification is prohibited, or requires you to ask for permission, or is restricted so much that you effectively can’t do it
freely.”57

Taking into account that the proprietary software was flooding the market, Stallman began to create his own software, which
would be controlled under the free movement principles.58 The first step in order to build a consistent alternative to the
proprietary software was to have an operating system,59 without which he could not have even run a computer.60 This ongoing
operating system was called GNU.61 FBuilding the operating system from scratch was a huge task, and therefore, Stallman
asked at an early stage of the project for help and money.62

An important strategic decision in the development of GNU was to make the system compatible with Unix.63 That had three
main advantages: first, Unix design was already proven; second, it was portable;64 and third, Unix users could easily switch to
GNU.65 The Unix operating system and its source code were delivered by its copyright owner (AT&T) to many academic and
research institutions around the world to allow its study, improvement, and enlargement.66 Unix was not free *169 software
because it was not licensed to everybody, and its redistribution was not free.67 However, the free software group found in
Unix the perfect model to develop its own operating system, replacing component by component.68 This job took over 5
years, from 1984 to 1990. By then, only one piece of the new operating system that was being built was lacking: the kernel.69

The kernel is defined as:

[t]he central module of an operating system. It is the part of the operating system that loads first, and it remains in main
memory [or RAM] [It provides] all the essential services required by other parts of the operating system and
applications. Typically, the kernel is responsible for memory management, process and task management, and disk
management.70

The GNU community was taking longer than expected in the creation of a kernel, but in 1991 a computer science student,
Linus Torvalds, released a more modest (i.e., non-portable and often-crashing) operating system which did have its own
kernel. Torvalds made this operating system free, and in 1992 the combination of Linux with the almost-complete GNU
system resulted in a complete operating system:71 the GNU/Linux system (or simply Linux).72

*170 D. Free Software Foundations and Perspectives

1. Introduction

The free software philosophy and structure were triggered by practical problems. As an example, Stallman explains his
dissatisfaction with the fact that the lack of access to the source code of the MIT AI Lab printer prevented him from adding
any convenient features, such as the one that notifies a user when a job has been printed.73 We must point out that Stallman is
a computer scientist and that his concern may be shared exclusively by other computer scientists or highly knowledgeable
users--a tiny fraction of computer users. However, if computer scientists have the right to access the source code and,
consequently, to fix the bugs and to improve the programs, new ways of developing software and distributing it in society
will emerge, as will be shown below.

Free software is a complex phenomenon with deep foundations and broad implications in different fields. In an extremely
brief summary, we can say that the foundations of free software have a moral character. However, the pillars of the building
are in legal documents that make the realization of free software principles possible. Finally, this legal approach leads to
certain forms of software development and economic strategies.74

2. Definition

A program is free software if users have four kinds of freedom:

• Freedom 0: The freedom to run the program, for any purpose.

• Freedom 1: The freedom to study how the program works, and adapt it to your needs. (Access to the source code is a
precondition for this.)

• Freedom 2: The freedom to redistribute copies so you can help your neighbor.

• Freedom 3: The freedom to improve the program, and release your improvements to the public, so that the whole
community benefits. (Access to the source code is a precondition for this.).75

*171 3. Moral Foundations

Stallman’s point of departure is that “society needs to encourage the spirit of voluntary cooperation in its citizens. When
software owners tell us that helping our neighbors in a natural way is ‘piracy,’ they pollute our society’s civic spirit.”76

This moral philosophy supports two main free software principles. First, free software must allow access to its source code.
Second, free software must allow making copies and redistribution of them. These two principles sit in opposition to
proprietary software, that is, software whose “use, redistribution or modification [that implies access to the source code] is
prohibited, or requires you to ask for permission, or is restricted so much that you effectively can’t do it freely.”77

The first principle is based upon the idea that society “needs information that is truly available to its citizens--for example,
programs that people can read, fix, adapt, and improve, not just operate. But what software owners typically deliver is a black
box that we can’t study or change.”78 In other words,

[t]he ease of modification of software is one of its great advantages over older technology. But most commercially available
software isn’t available for modification, even after you buy it Software development used to be an evolutionary
process, where a person would take an existing program and rewrite parts of it for one new feature, and then another person
would rewrite parts to add another feature; in some cases, this continued over a period of twenty years. Meanwhile, parts of
the program would be ‘cannibalized’ to form the beginnings of other programs. The existence of owners prevents this kind of

evolution, making it necessary to start from scratch when developing a program.79

In relation to the lack of access to the source code, Stallman makes a very relevant point from the copyright point of view:
“In any intellectual field, one can reach greater heights by standing on the shoulders of others. But that is no longer generally
allowed in the software field--you can only stand on the shoulders of the other people in your own company.”80

The freedom to make and distribute copies derives from the intangible nature of intellectual works. In opposition to material
objects, like cars, chairs, or sandwiches, programs can be reproduced at almost no cost.

It is easy to show that the total contribution of a program to society is reduced by assigning an owner to it. Each potential
user of the program, faced with the need to pay to use it, may choose to pay, or may forego use of the program. When a user
chooses to pay, this is a zero-sum transfer of wealth between two parties. But each time someone chooses *172 to forego use
of the program, this harms that person without benefiting anyone. The sum of negative numbers and zeros must be negative.81

One common misunderstanding about free software is that it is forbidden to make money with its distribution; this is not
correct. This misunderstanding can be traced back to the GNU Manifesto, which Stallman started with the following
sentence: “GNU . . . is the name for the complete Unix-compatible software system which I am writing so that I can give it
away free to everyone who can use it.”82 However, eight years later Stallman made this clarification:

[T]he wording here was careless. The intention was that nobody would have to pay for *permission* to use the GNU system.
But the words don’t make this clear, and people often interpret them as saying that copies of GNU should always be
distributed at little or no charge. That was never the intent; later on, the manifesto mentions the possibility of companies
providing the service of distribution for a profit. Subsequently I have learned to distinguish carefully between ‘free’ in the
sense of freedom and ‘free’ in the sense of price. Free software is software that users have the freedom to distribute and
change. Some users may obtain copies at no charge, while others pay to obtain copies--and if the funds help support
improving the software, so much the better. The important thing is that everyone who has a copy has the freedom to
cooperate with others in using it.83

The ambiguity of the term “free” has caused a search for alternatives, like “liberated,” “freedom,” “open,” and
“non-proprietary.”84 However, Stallman insists that these other words have either the wrong meaning or some other
disadvantage and maintains the original term.85

*173 4. Legal Approach

The legal perspective of free software cannot be underestimated. In the end, the whole free software philosophy is only
possible through its legal construction.86 As it has often been said, the characteristic freedoms of free software seem to clash
with copyright. It may be argued that copyright foresees some exceptions in favor of the user of a legal copy to run the
program (freedom 0) and to adapt it to the user’s needs (freedom 1). However, we will not delve into this discussion, as it is
clear that the redistribuition of copies (freedom 2) and the release of modified versions of the program (freedom 3) are only
possible under the author’s authorization.

An apparently straightforward solution would be to disclaim the copyright on the program which we want to be free. In other
words, we would take the necessary steps to place the program in the public domain. However, this would be unsatisfactory
in order to achieve the goals of the free software movement. First, a program in the public domain can be released as object
code, and that impedes the access to its source code. Second, if no copyrights are attached to the program, even being
released as source code, everyone could redistribute it as proprietary--that is, turn its source code into object code and release
it only as such.87 If the redistribution as proprietary software takes place after any copyrightable modification is made to the
public domain program, the author of the modification will be protected under copyright laws.88 It is easy to realize that these
actions endanger free software movement goals.89

Therefore, the public domain strategy is discarded and instead a copyright license is issued, called the GNU General Public
License (GNU GPL).90 The GNU GPL is based on two main clauses: first, the license provides users with the freedom to use,
modify, and redistribute the software (free software clause); and second, the license forces any person redistributing the
original or modified free software to do it under the same license, that is, under the free software clause (copyleft clause).91
The license was written to guarantee that not only the original *174 free software but also every single modification or
derivative work will allow access to and redistribution of the source code.92

The originality and complexity from the GNU GPL lies in its copyleft clause, which basically states “that anyone who
redistributes the software, with or without changes, must pass along the freedom to further copy and change it.”93 This is what
is called “copyleft.”94 The concept copyleft reflects in an amusing way that the GNU GPL is achieving through the rights
granted to the copyright holder the very opposite effect to the one intended by copyright: freedom instead of control.95

The notions of free software and copyleft are not synonymous. As we have seen before, software is free if it complies with
the four mentioned freedoms. However, that does not necessarily mean that it also guarantees the access to the source codes
of modified versions or its redistribution. For example, if a program is placed in the public domain as object code, it will be
free software but not copylefted software. Moreover, there are some licenses that allow conversion of free software into
proprietary software, for example, the BSD (Berkeley Software Distribution).96 The works released under this kind of license
“are usually called ‘open’ rather than ‘free,’ or if ‘free’ are qualified as ‘but not copyleft.”’97 I will expound on this difference
below.

5. Software Development

Naturally, the lack of control under copyleft licenses influences the way in which software is produced. The traditional model
of developing software, that is, a company employing computer scientists to sell the software that they produce, requires
strict legal control over products, and it is therefore incompatible with the GNU GPL or any other copyleft license. If any
third party could freely redistribute *175 the software produced expensively by a private company, the latter would simply
run its business at a loss.

The software development under the free software movement premises is based on the work of computer scientists or
hackers,98 who voluntarily and without expecting an economic benefit in return help to build a computer program. Licensing
copyrights is forbidden under the GNU GPL.99 Therefore, the authors of the program have no direct economic advantage
against any persons. The incentives to cooperate in a free software project are satisfaction of programming,100 prestige,101 and
economic gains obtained from sources different from the copyright licenses, for example, funding.102 Other profit strategies
are also possible under the free software principles,103 as we will see in the following section.

In a very famous publication, Eric Raymond compares the proprietary and free models of software development with a
cathedral and a bazaar.104 The cathedral represents the model where a single person or a small group crafts the program and
works in isolation until the release of the final product.105 In opposition, in the bazaar, anyone can contribute to the program
with different approaches, debugging solutions, and improvements.106 Under Raymond’s view, an open source project begins
with the creation of a program. This program should be released to the community as soon as it constitutes a “plausible
promise,” even if it does not work particularly well or is still incomplete.107 Once the program is being developed by the
community, it is important to release the new versions often in order to get *176 more corrections.108 The free software
movement strongly believes that the most effective way to produce software is by working in a community because “[g]iven
a large enough beta-tester and co-developer base, almost every problem will be characterized quickly and the fix obvious to
someone. Or, less formally, ‘Given enough eyeballs, all bugs are shallow.”’109

Raymond’s metaphor has found some criticisms in the literature. First, it has been argued that most open source software
“[is] developed by individuals, rather than communities.”110 That may be true, but it would not change Raymond’s point in
relation to the big programs, like the development of an operating system. Second, many raise the point that Raymond
underestimates the role of the productivity-multiplying effect of conventional management.111 But Raymond’s contention is
that the community itself or the project leader of an open source project is more effective in all the tasks attributed to the
conventional management team.112 Third, it has been observed that Linux, which is the open source project on which
Raymond bases his theory, “looks more like a highly centralized (cathedral) development model.”113 In fact, the most
important open source projects have a leader or coordinator--some compare their role to a dictator. For example, in Linux it is
Linus Torvalds who, with the support of a small group of lieutenants, makes the final decisions about the patches that will be
implemented in the next versions of the program.114 In Apache the committee directors are periodically elected in a
democratic manner by the members of the Apache Foundation.115 This criticism may affect the open source main version of a
certain project; however, it is still true that nobody will prevent an independent programmer from using the source code to
improve it and to make his own version available.

To sum up, open source projects are developed under a variety of models, and in certain cases, their characteristics are not so
different from proprietary models. However, when an open source program is released as a final and complete product (also

known as version 1.0), and assuming that it has some appeal to other computer scientists, the global review process by the
community will occur. This will never happen under the proprietary approach.

*177 6. Economic Models

For many years, the overwhelming opinion among jurists has been that granting copyright protection over software is the
only way to guarantee production and quality. Along this line of thinking, the National Commission on New Technological
Uses of Copyrighted Works considered that “some form of protection is necessary to encourage the creation and broad
distribution of computer programs in a competitive market.”116 And at the same time it dismissed the possibility that “the
creator is indifferent to cost and donates the work to the public,” with the only exception for the academic and government
sponsored research.117 This idea has been promoted by the proprietary industry. Bill Gates asked the following rhetorical
question in a letter dated in 1976 to open source programmers: “One thing you do is prevent good software from being
written. Who can afford to do professional work for nothing?”118

However, as we have already seen, the free software movement has proven that it is possible to renounce all economic
advantages from copyright and still produce software of a reasonable quality.119 The question now is if, after renouncing the
royalties coming from the copyright licenses, there is any economic model supporting the production, distribution, and
maintenance of free software.

As we have seen, before the release of an open source computer program, some funding can come from donations. However,
once the software is in the computers of final users, revenues will be made by the support sellers or redistributors. This model
includes “media distribution, branding, training, consulting, custom development, and post-sales support.”120 One famous
example of a company based on open source software redistribution is Red Hat, which not only distributes the software but
also provides maintenance services to its customers.121 The support seller economic model can even indirectly explain the
*178 interest of developers in working on open source projects for free, as they will gain experience that will allow them or
their companies to guarantee high quality support to final users of the open source program that they developed.122

There are other economic models: “loss leader,” in which the open source product is used to promote the sales of related
proprietary software; “widget frosting,” where the open source software supports the hardware, which is the actual source of
revenues; “accessorizing,” in which a company distributes books and other physical items associated with a certain open
source software; “service enabler,” where a company creates and distributes open source software to support access to
revenue-generating online services; “sell it, free it,” where a company releases software products first as proprietary and then
converts them to open source products when the benefits of developing the software products in an open source environment
outweigh the direct software license revenues they produce, typically when a new proprietary version is released; “brand
licensing,” where even if a company releases its software products as open source, it still retains the rights to its product
trademarks (e.g., Linux and Mozilla) and logos; and “software franchising,” in which the company would authorize other
developers to use its brand names and trademarks in creating associated organizations doing open source support and custom
software development.123

E. Free Software v. Open Source Software

1. Introduction

The terms free software and open source are often taken for one and the same thing. Although it may be true that the
differences are not big, they are at least worth an explanation. The open source concept was born in February 1998 as a
reaction to Netscape’s announcement to give away the source of its browser.124 A small group of computer scientists (Open
Source Initiative) coined the term open source with the intention of making open development processes more appealing for
the corporate world.125 This concept was supported by important actors in the free movement, like Linus Torvalds, but not by
Richard Stallman or his Free *179 Software Foundation, and that caused a split.126 Paradoxically, the expression open source
has become the more popular of the two--92 matches in the titles of law review articles of the Westlaw database against only
10 for free software127-- but free software licenses, particularly the GNU GPL, are more used by far.128

The differences between free software and open source can be observed in four areas: the terminology, the definition, the
philosophy, and their respective characteristic licenses.

2. Terminology

The members of the Open Source Initiative claim that open source is a much clearer term than the ambiguous free software.129
The latter, they maintain, has many different meanings for different groups of people, from distribution for free to
distribution under a copyleft license.130 The counterargument from the Free Software Foundation is that “the obvious meaning
for the expression ‘open source software’ is ‘You can look at the source code.’ This is a much weaker criterion than free
software; it includes free software, but also includes semi-free programs131 such as Xv, and even some proprietary programs. .
. .”132 To summarize, the *180 expression open source software underlines the fact that one has access to the source code but
not the possibility to modify and/or redistribute the program, whereas the term free software emphasizes the freedoms to
copy, redistribute, and modify the program. However, free could mean (and is often misunderstood to mean) “at no charge;”
moreover, the reference to access to the source code is only indirect.

In coherence with their respective main concepts, the Free Software Foundation uses the term non-free software, which
includes semi-free and proprietary software. In opposition, the Open Source Initiative uses the term “closed” to refer to
software, the access to the source code of which is restricted, and this term is expressly excluded from the Free Software
Foundation terminology.133 Both organizations consider the software proprietary when either its redistribution or access to its
source code is disallowed.134 Generally, the terms “non-free software” and “closed software” imply proprietariness.135
However, there are some exceptions. For example, under the terminology of the Free Software Foundation, if a piece of
software is allowed to be used, copied, distributed, and modified exclusively for non-profit purposes, it would be semi-free
software--that is, non-free software--but not proprietary. Under the definition of the Open Source Initiative, if a piece of
software allows access to and modification of the source code for private purposes but not its redistribution, it is not closed
source software, but it is still proprietary.

In order to encompass both free software and open source software, the combination of both expressions has been proposed:
“free and open source software” (FOSS). Another possibility is to refer to both types as the opposite of proprietary software,
that is, “non-proprietary.”136 Finally, a working group within the European Union adopted the term “Libre Software,” where
“libre” means “free” in Spanish and French--as opposed to “freedom”--and hence does not cause any ambiguity.137
Alternatively, the combination of the last two phrases has been used: “Free/Libre Open Source Software.”138

*181 3. Definitions

In order to eliminate or at least reduce these ambiguities, both groups have published definitions of the terms that they
defend.139 We have already seen that the free software movement characterizes “free software” as granting the user the
freedom to run, copy, distribute, study, change, and improve the software and, therefore, to access the source code.140 The
Open Source Initiative guidelines are exposed in the Open Source Definition, which contains ten criteria.141 First, the license
must allow for free redistribution.142 Second, “the program must include source code, and must allow distribution in source
code as well as [in] compiled form.”143 Third, “the license must allow modifications and derived works.”144 Fourth, “the
license may restrict source-code from being distributed in modified form only if the license allows the distribution of ‘patch
files’145 with the source code for the purpose of modifying the program at build time.”146 This allows for unofficial changes
that can be readily distinguished from the base source. Fifth, “the license must not discriminate against any person or group
of persons.”147 Sixth, “the license must not restrict anyone from making use of the program in a specific field of endeavor.”148
Seventh, “the rights attached to the program must apply to all to whom the program is redistributed without the need for
execution of *182 an additional license by those parties.”149 This criterion forbids closing up software by indirect means, such
as requiring a non-disclosure agreement. Eight, “the rights attached to the program must not depend on the program’s being
part of a particular software distribution.”150 Ninth, “the license must not place restrictions on other software that is distributed
along with the licensed software.”151 And tenth, “no provision of the license may be predicated on any individual technology
or style of interface.”152

The four freedoms of the free software movement are almost equivalent with the ten clauses of the Open Source Definition.153
Both definitions guarantee the possibility to run,154 copy, distribute,155 study, change, and improve the software and, therefore,
to ensure access to the source code.156 In some minor aspects, the Open Source Definition is less advantageous for the
recipients of the program and more friendly to commercial interests.157 For example, the Open Source Definition allows
authors to restrict the distribution of source code in modified form in very specific circumstances;158 the Open Source
Definition does not allow restrictions on other software that is distributed along with the licensed software, while the free
software definition is silent on this point. To sum up, the relevant differences between the position of the Free Software
Foundation and that of the Open Source Initiative are not contained in the definitions that they use, but in the copyleft clause,

which we will analyze later.

As a matter of fact, many of the licenses complying with the Open Source Definition can be qualified as free software as
well, and the reverse is also true. Most of the 58 licenses approved by the Open Source Initiative159 are recognized as *183
free software by the free software movement160 (i.e., Academic Free License; Apache License 2.0; Apache Software License;
New BSD license; Eclipse Public License; X11, also called MIT license; PHP license; Python license; zlip/libpng license;
and so on)--though they are not necessarily compatible with the GNU GPL because many of them fail to include a copyleft
clause. The licenses that have been approved by the Open Source Initiative as open source licenses but do not satisfy the
requisites of the free software definition are rare, though not completely non-existent (i.e., Reciprocal Public License).161

4. Philosophy

The free software movement and the Open Source Initiative describe their own philosophic background in a fair,
distinguishable manner. On the one hand, the free software movement justifies the freedoms to distribute and access the
source code as a matter of social fairness. The proprietary control over these acts causes different levels of harm: in
particular, fewer people using the program, none of the users being able to adapt or fix the program, and other developers not
being able to learn from the program or base new work on it.162 For these reasons, the free software movement embarks on a
crusade against proprietary software, which they characterize as “the enemy.”163 Consequently, the free software movement
has been depicted by the literature as idealistic164 or even radical.165

On the other hand, the Open Source Initiative agrees with the superiority of an open development process, but they consider
it compatible with the commercial software companies, that is, with proprietary software. They consciously distinguish
themselves from the “confrontational attitude that has been associated with ‘free software’ in the past and sell the idea strictly
on . . . pragmatic, business-case grounds.”166 Consequently, the Open Source Initiative tolerates the conversion of open source
software into closed or proprietary software and dislikes the use of the word “free,” which can be easily misunderstood as
“free of charge.” *184 Thus the members of the Open Source Initiative have been described as pragmatic.167

5. Representative Licenses: GNU GPL v. BSD License

We have already seen that the opposite philosophic foundations of the free software movement and the Open Source
Initiative did not lead to very diverse definitions of free software and open source software. However, their different
foundations are starkly reflected in the most representative licenses for both movements: the GNU General Public License
(GNU GPL) and the Berkeley Software Distribution license (BSD),168 respectively. In particular, the GNU GPL includes a
copyleft clause whereas the BSD license does not. The copyleft clause imposes the obligation over modified or, in general,
redistributed software to be licensed under the same license that allows its modification and redistribution. In other words,
whoever wants to redistribute the software must pass along the freedom to further copy and change it. This might be seen as a
restrictive condition for the commercial software companies or as the enlargement of the software user’s rights. In
opposition, the BSD license does not have any copyleft clause, which means that it is possible to transform open source
software into proprietary software.

Also, the Free Software Foundation describes the BSD license as free software, but not copyleft.169 On the other hand, the
Open Source Initiative considers the GNU GPL as open source software.

6. Conclusions

The most relevant differences that we have examined show a classification of three kinds of licenses or software strategies.

• First, proprietary license, which generally means that the access to the source code is restricted and its modification and
redistribution is not allowed without authorization.

• Second, free software license or copyleft software, the access to the source code of which and the modification and
redistribution of which are allowed under the condition that the modified and/or redistributed program will recognize these
same rights.

*185 • Third, open source license or non-copyleft open source software, which unconditionally allows access to the source
code, its modification and redistribution--and therefore its conversion into proprietary software.

The first two categories are completely irreconcilable, even antagonistic. The free software movement and the open source
movement have different philosophies and goals, but still have enough common characteristics to allow collaboration and
sympathy between both movements.170

III. Contractual Issues

A. Introduction

The non-proprietary licenses, both copyleft and non-copyleft open source software licenses, introduced a completely
revolutionary way to deal with copyrights.171 However, the most problematic issue in the free software and open source
software arena is the copyleft clause.172

The non-copyleft open source software licenses do not generally impose any obligations on the licensors, besides those
related to recognition of authorship. Therefore, the likelihood of a legal dispute for this kind of license is rather small.
Meanwhile, the copyleft licenses impose on the downstream licensees the obligation to release their programs under the same
copyleft clause. Due to this expansion of the effects of the copyleft clause over all the subsequent modifications and
redistributions of the work, the copyleft licenses have been described as “viral *186 contracts,”173 that is, as “an attempt to
make commitments run with a digital object.”174

It may be useful for our discussion to quote the GNU GPL copyleft clause:

Section 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet
all of these conditions: . . . b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this
License.175

The first debate that the copyleft clause has raised is about the legal nature of the document that introduces it. A significant
number of scholars have questioned whether the GNU GPL should be treated as a license and suggest that we are rather
dealing with a contract.

B. Contract v. License

1. Relevance of the Discussion

The distinction between contract and license is not merely academic. Most of the scholars entering this debate are considering
at the same time the legal consequences that the qualification under one of the two categories may have for the GNU GPL.

First, copyright is a highly harmonized body of law. The Berne Convention for the Protection of Literary and Artistic Works
(1886);176 the Rome Convention for the Protection of Performers, Producers of Phonograms and Broadcasting *187
Organizations (1961);177 the WIPO Copyright Treaty (1996);178 the WIPO Performances and Phonograms Treaty (1996);179
and the WTO Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPs) (1994)180 have successfully
pursued harmonization at an international level. Other supranational agreements, such as the eight European Directives
passed in the copyright field,181 are also remarkable achievements in this same enterprise. On the other hand, the law of
contracts varies in a notable manner between different countries and even within the same country, as happens across the
United States.182

Second, if one considers the GNU GPL as a contract, a considerable array of problems arise. For example, is the delivery of
the software under the GNU GPL a contract without consideration and, therefore, void? How and when do the offer and
acceptance take place? Are warranty waivers enforceable when the recipient is a consumer?183 This question seems irrelevant
if we would deal with the GNU GPL as a copyright license.

Third, the remedies applicable will depend on whether it is a contract or a license. If it is a contract, it seems that a person

who refuses to comply with the terms of the GNU GPL could be forced to release the source code of his derivative work.
Meanwhile, if it is a license, the only remedies available are to hinder or stop the use of copyleft licensed code under a
non-copyleft license and, perhaps damages. However, the release of the code of a derivative work which is using copyleft
code under a proprietary license cannot be legally pursued.184

*188 Fourth, the enforceability of a license can only be claimed by the author or the copyright holder.185 On the other hand,
contracts can be enforced by the contracting parties, but not by third persons. That may interfere with the ability of the
original author to sue downstream parties, who are not in privity with him.

2. Conceptual Approach

An appealing and simple solution to determine the right category for the GNU GPL is to look up the definitions of contract
and license. Eben Moglen, chairman of the Software Freedom Law Center and general counsel for the Free Software
Foundation, opines:

[t]he word ‘license’ has, and has had for hundreds of years, a specific technical meaning in the law of property. A license is a
unilateral permission to use someone else’s property. The traditional example given in the first-year law school Property
course is an invitation to come to dinner at my house. If, when you cross my threshold, I sue you for trespass, you plead my
‘license,’ that is, my unilateral permission to enter on and use my property.186 In short, a license is permission to do
something.187

The Free Software Foundation advocates that the GNU GPL is a license. In the GPLv3 Draft, this is even expressly stated in
the title of Section 9.188 The resulting advantages for the Free Software Foundation position in considering the GNU GPL as a
license are fairly clear. First, it avoids the extreme uncertainty caused by the diverse contract regulations. Second, it avoids
the multiple inconveniences caused by the law of contracts (e.g., some of the parties using the GNU GPL are not familiar
with the requirements to make a valid offer). Third, it avoids the privity requirement. And the only point where a
qualification of a contract could be more interesting, which is specific performance of the terms of the agreement, is not
contained in the goals of the Free Software Foundation.189

*189 On the other hand, “[a] contract is a promise or a set of promises for the breach of which the law gives a remedy, or the
performance of which the law in some way recognizes as a duty.”190 From this definition two important characteristics have
been derived. The first characteristic is the presence of a promise, which is “a manifestation of intention to act or refrain from
acting in a specified way, so made as to justify a promisee in understanding that a commitment has been made.”191 The second
characteristic is the necessity of an exchange; under the doctrine of consideration, courts do not enforce contracts unless the
promisee has given the promisor something in return.192

The dichotomy between permission and exchange gets a bit more complicated when viewed in light of the Uniform
Computer Information Transactions Act (UCITA), which defines a license as “a contract that authorizes access to, or use,
distribution, performance, modification, or reproduction of, information or informational rights, but expressly limits the
access or uses authorized or expressly grants fewer than all rights in the information, whether or not the transferee has title to
a licensed copy.”193

This definition seems to be formulated for the proprietary software license strategy. The proprietary software companies have
avoided selling their products and instead they usually transfer the software under a license agreement. The main advantage
of this strategy is that a license is not a sale194 and, therefore, the “first sale doctrine” is not applicable.195 Nevertheless, the
courts seem to take for granted that a software license is a sale of goods subject to the U.C.C. or, at least, the equivalent to
it.196 Moreover, the courts agree that licenses are enforceable unless *190 their terms are objectionable on grounds applicable
to contracts in general, such as for violating a rule of positive law or being unconscionable.197

From the preceding statements and rules, some authors have drawn the conclusion that two different definitions of license are
possible: a non-contractual license--when it authorizes acts restricted by copyright--and a contractual license--when it is
supported by consideration.198

3. The Dual Solution

The literature has tried to categorize the GNU GPL as a whole. However, the recipients of free software can be divided into

two groups: mere users and redistributors. Mere users may get free software at no charge. In other words, they do not have
any obligation in exchange for reproducing the software. Moglen explains that the GNU GPL

license does not require anyone to accept it in order to acquire, install, use, inspect, or even experimentally modify GPL’d
software. . . . The free software movement thinks all those activities are rights, which all users ought to have; we don’t even
want to cover those activities by license. Almost everyone who uses GPL’d software from day to day needs no license, and
accepts none.199

Beyond the philosophical foundations of the free software movement, it is a fact that copyright law recognizes the author’s
exclusive right to authorize the reproduction of his work.200 That means that a person who downloads a computer program
onto his hard drive or copies it from a CD is making a reproduction; therefore, he needs the authorization of the author.
Although the GNU GPL does not expressly authorize the user to make copies for private use, a right to make private copies
without restrictions can be derived from recognition of the right to make and distribute copies, provided that they are released
under the terms of the same license. That is, if the redistribution of the copies demands observance of the copyleft clause, the
non-redistributed copies can be made without any requisite.201 *191 Moreover, the license does explicitly recognize a right to
run the program.202 If that argument is not persuasive enough, a license may be implied by the conduct of the licensor--for
example, uploading a computer program in a publicly available server.203 In both cases, we are facing a mere permission, that
is, a license in the strict sense.

There are also redistributors to whom the GNU GPL is directed. As we have seen, the Free Software Foundation advocates
that the GNU GPL is a license to the redistributors. This position is reflected in section 5:

You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to
modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or
works based on it.204

Although the section uses the word “license” three times, and with capital “L,” there are two facts suggesting that it is not a
license, but a contract. First, the section speaks about “acceptance,” which is the second step of the “meeting of minds”
characteristic for a contract--the first step is the offer, in this case, the GNU GPL itself. Second, the section imposes
obligations on the licensee by referring to the rest of the license, in particular to the copyleft clause in section 2(b).205 The
licensee may copy and distribute the work, with or without modification, but in return he has to release the copies under the
same terms. That is not a mere permission, but an exchange.206 Therefore, the relation between licensor and licensee is a
contract or a contractual license.

It appears that this question has not yet been addressed by any U.S. court. Nevertheless, in two settled cases where the
enforceability of the GNU GPL was at *192 issue, breach of the GPL as a contract was alleged.207 In German courts, the
GNU GPL has been considered a contract.208

Taking into account what has been said in this section, it can be stated that the distribution of free software is done in two
different ways. First, if the person getting the software is a mere user who does not redistribute the software, he obtains his
rights through a license. Second, if the person who gets the software redistributes it, with or without modification, he will be
bound by certain obligations by virtue of the copyleft clause; these duties do not follow directly from the Copyright Act, but
from a contract or, to use the more common terminology in the field, from a contractual license.

The understanding of the GNU GPL as a contract in the cases mentioned above raises various contractual issues which the
Free Software Foundation wanted to avoid. These uncertainties affect the contract formation, the possibility of passing
obligations and rights to third parties through the license, the content of the license (in particular, the warranty disclaimer),
and the complex relation between copyright and contract law. The next two sections are devoted to contract
formation--specifically consideration and shrinkwrap/clickwrap licenses.

C. Consideration

1. Introduction

In the common law system, to make a promise enforceable, the promisee has to do something that is either a detriment to the
promisee or a benefit to the promisor.209 That benefit or detriment is called consideration. Without consideration, a contract
cannot be formed.210

*193 2. Definition

The Restatement (Second) of Contracts has defined consideration in terms of a bargain:

• To constitute consideration, a performance or a return promise must be bargained for.

• A performance or return promise is bargained for if it is sought by the promisor in exchange for his promise and is given by
the promisee in exchange for that promise.

• The performance may consist of

• an act other than a promise, or

• a forbearance, or

• the creation, modification, or destruction of a legal relation.

• The performance or return promise may be given to the promisor or to some other person. It may be given by the promisee
or by some other person.211

3. Peppercorn Theory

The consideration requirement is relaxed by the fact that “[v]irtually anything that anyone would bargain for in exchange for
a promise can be consideration for that promise.”212 The courts often use the hyperbole that even a mere peppercorn can
constitute consideration.213

4. Consideration in Copyleft Software Licenses

Under the GNU GPL or any other copyleft software license, the two parties are the copyright holder or licensor and the
redistributor or licensee. On the one hand, the licensor’s consideration is clearly the authorization to modify and distribute the
software. On the other hand, the licensee’s consideration is more obscure. Some legal scholars have argued that the licensor
is not getting anything in return, which may mean that no contract is formed.214 However, it seems more *194 reasonable to
understand that the licensee’s consideration is his promise to abide by the copyleft clause.215 Therefore, the agreement is
completely enforceable.

D. Clickwrap and Shrinkwrap Agreements

1. Introduction

Proprietary software is not sold but rather is only licensed.216 Under this strategy, the software industry aspires to design its
own rights and duties, even beyond the rights granted by copyright law.217 The release of the software is done under standard
form contracts or “mass market licenses,”218 in particular, shrinkwrap or clickwrap licenses.

*195 The literature defines a shrinkwrap as “a license agreement that is usually contained in a box of software, which states
that by opening the package, you agree to the terms of the license agreement.”219 Clickwrap licenses, on the other hand,
are a form of license used in an interactive manner on a computer. Typically, the user is presented with a display on a
computer screen of the license and is prevented from proceeding with downloading or installation of the software until such
time that he or she has indicated assent by clicking on a radio button on the computer monitor display.220

Shrinkwrap licenses can be categorized into different subgroups: a) in-box licenses, where the license is enclosed with the
product in a sealed envelope; b) box-top licenses, which can be read before opening the box; and c) referral licenses, where
there is a sticker indicating that the CD-ROM should not be opened prior to reading the license agreement.221 Clickwrap
licenses may be presented in the following ways: a) prior to download, a scroll-box appears and the user is asked to read a
license and click “I agree”; b) the license is shown in a similar way, but during the installation of the program rather than
before download; and c) the so-called “browsewrap” licenses--a variation of clickwrap licenses which are ordinarily found in
online transactions where the user is informed of the existence of a license but is not required to read the license in order to
proceed.222

2. Shrinkwrap and Clickwrap Licenses in the Courts

U.S. courts have had many opportunities to deal with the enforceability of shrinkwrap licenses. The decisions are not
completely uniform, but main guidelines can be drawn. An early case in this field is Step-Saver Data Systems, Inc. v. Wyse
Technology,223 where the plaintiff, Step-Saver, developed and marketed a multi-user computer system with hardware from
Wyse and software from TSL.224 Almost immediately upon installation of the system, Step-Saver began to receive complaints
from most of its customers, and at least twelve of them filed suit.225 Step-Saver reacted by suing its providers.226 The orders
were placed by telephone, but on the package of each copy of the program was printed a license with a disclaimer of
warranties.227 The issue in this case was the enforceability of *196 such a license.228 The court agreed with Step-Saver’s
contention that the contract for each copy of the program was formed when TSL agreed, on the telephone, to ship the copy at
the agreed price.229 The box-top license, as Step-Saver argued, was a material alteration to the parties’ contract containing
additional terms which did not become a part of the contract.230

Some years later, the courts changed their position. The leading case in the field of shrinkwrap licenses is ProCD, Inc. v.
Zeidenberg, where the plaintiff, ProCD, compiled information from more than 3,000 telephone directories into a computer
database, which could be searched according to users’ criteria.231 The box enclosing the product declared that the software
came with restrictions stated in an enclosed license.232 This license was printed in a manual inside the box and appeared on
the user’s screen every time the software was run.233 The license limited the use of the application program and listings to
non-commercial purposes.234 However, one of the buyers, Matthew Zeidenberg, made the information available over the
World Wide Web for a price.235 ProCD filed suit, but the district court accepted the view of the defendant that a contract
includes only the terms on which the parties have agreed and not any hidden terms.236 As a consequence, the district court
declared the license void because the terms did not appear on the outside of the package.237 On appeal, the Seventh Circuit
reversed the decision on the basis that “[n]otice on the outside, terms on the inside, and a right to return the software for a
refund if the terms are unacceptable (a right that the license expressly extends), may be a means of doing business valuable to
buyers and sellers alike.”238 The court pointed out that contracts in which the exchange of money precedes the communication
of detailed terms are common.239 In short, the court endorsed the shrinkwrap license.

*197 The analytical difference between Step-Saver and ProCD is whether “money now, terms later” forms a contract (i) at
the time of the purchase order or (ii) when the purchaser receives the box of software, TseeTs the license agreement, and does
not return the software.240 In the first scenario (adding terms to an existing contract), U.C.C. section 2-207 applies.241
Therefore if the offeree is a consumer, the new terms need to be expressly accepted; if the offeree is a merchant, the
acceptance may be implicit under certain circumstances, but not if the new terms materially alter the agreement. In the second
scenario (forming a contract), the relevant provision is U.C.C. section 2-204,242 which emphasizes that the parties can form a
contract in any manner sufficient to show agreement. Later decisions have supported the ProCD interpretation243 with very
few cases to the contrary.244

The clickwrap licenses present very similar questions to the ones posed by the shrinkwrap licenses. Therefore, courts have
accepted their enforceability through the ProCD doctrine.245 Nevertheless, the special technical features of the clickwrap
licenses increase the chance that the offeree is not made aware of the existence of the license, which can lead to its
unenforceability.246

This is particularly so in the case of browsewrap licenses. In Specht v. Netscape Communications Corp.,247 the court was
asked to determine
*198 whether plaintiffs-appellees (‘plaintiffs’), by acting upon defendants’ invitation to download free software made
available on defendants’ webpage, agreed to be bound by the software’s license terms (which included the arbitration clause
at issue), even though plaintiffs could not have learned of the existence of those terms unless, prior to executing the
download, they had scrolled down the webpage to a screen located below the download button.248

The court concluded that consumers did not manifest assent, because the mentioned reference was not sufficient to make
consumers aware of those terms.249 Therefore, consumers were not subject to the license agreement. In an apparently similar
case, Ticketmaster Corp. v. Tickets.com Inc.,250 the defendant ignored the prohibition of “deep linking” included in the
license agreement, which was linked to the plaintiff’s homepage.251 The court observed that
the terms and conditions are set forth so that the customer needs to scroll down the home page to find and read them. Many
customers instead are likely to proceed to the event page of interest rather than reading the ‘small print.’ It cannot be said that
merely putting the terms and conditions in this fashion necessarily creates a contract with any one using the web site.252

That being said, other courts have suggested that a link is enough to create a binding agreement253 and that it is not always
necessary to click the “I Agree” button to be obliged by the terms of the license.254

Although the decisions are not uniform, they allow us to understand the main guidelines used by courts to decide the
enforceability of shrinkwrap and clickwrap licenses.255 In any event, if the following measures are observed, the
enforceability of the license is almost guaranteed. First, the offeror should give notice to the offeree at the time when the
latter decides to acquire the product that the terms of a *199 shrinkwrap or clickwrap license will govern their agreement.256
However, the chance that a court will be tempted to declare unenforceable the additional terms under U.C.C. section 2-207(2)
is clearly higher. Second, the offeree should be forced to undertake positive steps to accept the license.257 The implementation
of this kind of procedure is extremely easy if the product is transferred online (i.e., clicking an “I Accept” radio button).
Nevertheless, other forms of acceptance, even remaining silent, are also possible, but the risk of being declared void is
higher.258 Alternatively, the recipient must have the opportunity to return the product if he does not agree with the terms.

3. Enforceability of Copyleft Licenses as Shrinkwrap or Clickwrap Contracts

The questions raised by using the GNU GPL as a shrinkwrap or clickwrap license have been considered the most serious
argument against its enforceability.259 Normally, the way in which a work is licensed can be observed in practice, but it is not
described anywhere. However, since the Free Software Foundation wants to encourage the application of the GNU GPL to
downstream licensors, it provides some recommendations of how to attach a notice informing downstream licensees of the
application of the license.260 Following the Free Software Foundation guidelines, this notice261 should be attached “to the start
of each source file to most effectively convey the exclusion of warranty; and each file should have at least the ‘copyright’
line and a pointer to where the full notice is found.”262 The notice should also indicate where to write in order to obtain a copy
of the GNU GPL.263

These recommendations are not part of the GNU GPL itself. Therefore, authors can release their software under the GNU
GPL without following the *200 proposed way to attach the license to the software.264 The general counsel of MontaVista
Software, Inc., a company which provides a Linux-based operating system to its customers, states that

[m]ost licensors get the GPL in one of two ways: they get a piece of paper with the GPL printed on it (but not normally
“wrapped” around any box or piece of software) [physical delivery] or they get, along with the software, an electronic file
containing the GPL (but normally without the file being designed as a clickwrap) [digital delivery].265

The vulnerabilities of the GNU GPL licensing method are: (1) the recipient of the software may not receive a notice of the
license before delivery, and (2) no signature or other manifestation of assent is generally required.266 Moreover, it should be
noted that the recipient may not get a copy, physical or digital, of the GNU GPL license. All of these factors, especially when
they are combined, increase the risk that a court will declare a license unenforceable. Given that increased likelihood, some
authors suggest that licensees are probably not bound by the terms of the license.267

Nevertheless, there are arguments to the contrary. First, the American Law Institute does not seem to consider the lack of
delivery of a copy of the license (referral license) as a decisive factor in excluding its application.268 Second, the National
Conference of Commissioners on Uniform State Laws has drafted the Uniform Computer Information Transactions Act
(UCITA), which has introduced provisions to guarantee the enforceability of shrinkwrap and clickwrap *201 agreements.269
However, only Maryland and Virginia have enacted the UCITA so far.270 Finally, the license actually affects only the persons
who intend to modify the software, redistribute the software, or both, as the license does not impose any obligations on mere
users. If we are dealing with a programmer who wants to modify software released under the GNU GPL, he will necessarily

open a source file and there is placed according to the recommendations of the Free Software Foundation a pointer to the full
notice, which directs in turn to the license.

4. Unenforceability of Copyleft Licenses as Shrinkwrap or Clickwrap Contracts

The enforceability of the GNU GPL will depend on the variables that have been discussed before, and there will be a
considerable number of border cases. Therefore, the question arises as to what will happen if the license is declared
unenforceable. Some authors argue that in such a situation, the licensees will have an implied license for modifying the free
software and redistributing it as proprietary.271

In my opinion, the situation is not that disastrous for the interests of the Free Software Foundation. In the absence of a
contract because the license is declared void, the open source software will still be protected by the Copyright Act.272 If the
program is made available to the public, it could be argued that there is an implied license to run the software, but the implied
license cannot be read more extensively. Therefore, there is no right to modify and redistribute the software. It is clearly
contradictory to state that the licensee can take advantage of the rights granted in the GNU GPL, but not be compelled by any
of its obligations.

The Free Software Foundation relies on the enforceability of the license. But it may be presumed that if the license was
unenforceable, they would claim the applicability of copyright law. The GNU GPL states that “[y]ou are not required to
accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if you do not accept this License.”273 One could read
*202 the license to say that these actions are prohibited by copyright law if the license is declared void.

E. Privity

1. Introduction

As an elementary principle of the common law system, contractual rights and duties can only be conferred or imposed on the
parties to a contract.274 In legal terms, that is described as the doctrine of “privity of contract.”275 “The common law doctrine
of privity means that a contract cannot, as a general rule, confer rights or impose obligations arising under it on any person
except the parties to it.”276 In other words, if X sells a car to Y under the condition that the car will not be sold to Z, and Y
does sell the car to Z, X will not be able to file suit against Z to recover the car because X is not in privity with Z.

2. Privity Concerns in Copyleft Software Licenses

The intention of the Free Software Foundation is to leave in the hands of the author of the program the power of filing suit
against any possible infringer, both licensees and downstream sublicensees. With this goal, the GNU GPL states that “[e]ach
time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to these terms and conditions. . . . You are not responsible
for enforcing compliance by third parties to this License.”277

However, the copyleft clause implies passing obligations and rights to third parties through the license. The legal feasibility
of this process has been questioned by a possible lack of privity.278 That means that the copyright holder could only file suit
against his licensee, but not against any downstream sublicensee.

*203 3. Relativization of Privity Concerns in Copyleft Software Licenses

Although the lack of privity between the author of the program and the downstream sublicensees seems clear, its
consequences are alleviated through different paths. First of all, there are certain exceptions to the doctrine of privity.279
Particularly relevant to our discussion is the exception for third party beneficiaries. However, to determine who has interest in
the performance of a contract entered into by others so sufficient as to allow the author to enforce the provisions of the
contract presents some difficulties.
Perhaps the most widely used test is that a person who wishes to enforce a contract to which he is not a party must show that
the contract was intended for his benefit in either all or part of its contemplated performance. Some courts . . . add that if
there is doubt concerning such intent the doubt will be resolved against the existence of the required intent, since parties are

presumed to contract for themselves.280

Therefore, the exception of third party beneficiaries does not TseeTm a safe way to solve the problem.

Second, the requirement of privity has been relaxed under modern laws281 and generally replaced by the doctrines of implied
warranty and strict liability, which allow a third party beneficiary or other foreseeable user to sue the seller of a defective
product.282 However, this relaxation only goes upstream from consumer to manufacturer. While it seems that the sublicensees
will have a strong case against the copyright holder if the software is defective--warranty waivers apart--it is more doubtful
that the copyright holder will have a comparable interest to sue the sublicensees.

Finally, even assuming that the lack of privity is a defense for the downstream sublicensees against the contractual claims of
the author of the program, the result would not be as dramatic as expected. In such a situation, a third party who does not
respect the terms of the license does not infringe the contract with the author--because there is no such contract at all--but he
does infringe the author’s exclusive rights of copyright. Consequently, the author cannot demand that any user of the
software observe the terms of the license, but he is able to block anyone from using the software under copyright law.
Moreover, the Free Software Foundation does *204 not force anyone to transform proprietary software into free software
because he or she used copyleft code. Instead, it gives the infringer the choice between ceasing to use the stolen code or
releasing the software under the GPL.283 Given that policy, the outcome of simply applying copyright is not that different
from having an enforceable agreement.

F. Warranty Disclaimer

1. Introduction

A warranty disclaimer is included in the GNU GPL284 and in other open source licenses.285 That is also a common practice in
proprietary software licenses. The waiver may apply in different relationships where a transfer of open source software
occurs. The most common ones are between the author of the program and a redistributor (i.e., Red Hat); the author of the
program and an end user (e.g., the programmer makes the software available for download); and a redistributor and an end
user (e.g., Red Hat and its customers). The differences between the three kinds of subjects taking part in the transfer of the
open source software are consequential to the validity or invalidity of the waiver, as shown below.

2. Merchants

If we accept that the U.C.C. is applicable to the sale of software,286 it is necessary to direct the attention to section 2-314,
which states: “(1) [u]nless excluded or modified (Section 2-316), a warranty that the goods shall be merchantable is implied
in a contract for their sale if the seller is a merchant with respect to goods of that kind.”287

Therefore, the implied warranty exclusively applies when only one of the parties is a “merchant,” which is defined as

a person who deals in goods of the kind or otherwise by his occupation holds himself out as having knowledge or skill
peculiar to the practices or goods involved in the transaction or to whom such knowledge or skill may be attributed by his
employment of an agent or broker or other intermediary who by his occupation holds himself out as having such knowledge
or skill.288 *205 Under this provision, a person will be a merchant based on specialized knowledge of either the goods or the
practices involved.289

Although it would be necessary to conduct a case-by-case analysis to determine who is a merchant in every particular
situation, it is generally true that companies such as Red Hat, which sell open source software for a fee, would be seen as
merchants, while programmers who make their works available on the Internet for free would not.290

The merchants are not trapped by the implied warranty though. They may exclude it as long as the language is conspicuous.291
In order to fulfill this requirement, the GNU GPL introduces the two sections of the warranty disclaimer with a bold and
capitalized title, which reads: “NO WARRANTY.”292 The text of both sections is capitalized as well.293 That seems to meet
the exclusion requirement. Moreover, the U.C.C. states that “unless the circumstances indicate otherwise, all implied
warranties are excluded by expressions like ‘as is.”’294 This precise expression is used and emphasized in GNU GPL section

11.295 Therefore, the GNU GPL warranty disclaimer apparently meets the spirit and requisites of the U.C.C.296 This conclusion
is coherent with the UCITA.297

Nonetheless, two warnings are worth attention. First, if the license is void as a shrinkwrap or a clickwrap license, according
to the requirements which have been explained before, the warranty disclaimer will not pass the exclusion test. Second, a few
states have enacted statutes prohibiting disclaimers of implied warranties.298

3. Non-Merchants

Common sense tells us that if a merchant can avoid the application of the implied warranty, a non-merchant should be in an
even better position. However, a more accurate analysis is still warranted.

*206 In the relationship between the author of the program and the redistributor, we have to assume that there is a contract
under the copyleft software license; otherwise, the redistributors would be infringing the copyrights of the author. As we have
seen before, the license meets the U.C.C. requirements to exclude an implied warranty.299 Moreover, the author of the
program is generally not a merchant; therefore, the implied warranty of merchantability is not applicable.300 In conclusion, the
author of the program has no responsibility to the redistributors not only because the warranty disclaimer is valid, but also
because of the lack of any responsibility due to his non-merchant position.

The conclusion drawn in the preceding paragraph is supported by UCITA, which states:

(a) [Free software defined.] In this section, “free software” means a computer program with respect to which the licensor
does not intend to make a profit from the distribution of the copy of the program and does not act generally for commercial
gain derived from controlling use of the program or making, modifying, or redistributing copies of the program. (b) [Implied
warranties inapplicable.] The warranties under Sections 401 [Warranty and obligations concerning noninterference and
noninfringement] and 403 [Implied warranty. Merchantability of computer program] do not apply to free software.301

Finally, the relationship of the copyright holder and the end user differs from the one between redistributor and end user
because the former is arguably not bound by a contract, as stated earlier.302 Implied warranties can be modified by contract,
but not by a condition to a license.303 Therefore, if there is no agreement between the parties, the warranty disclaimer does not
have any effect. However, it is necessary to emphasize that the implied warranty will not emerge in the first place. The author
of the program and the end user will be third parties to each other; therefore, the author could only be responsible under the
much more relaxed standards of tort law.304

*207 G. Copyright v. Contract

1. Introduction

The author of a program has three different and cumulative methods to control the exploitation of his work: copyrights,
contracts, and technological-protection measures (e.g., copy-protection devices). Undoubtedly, the protection of the author’s
interests is crucial to promote the creation of works. However, it is a non sequitur that the more protection, the better.
Copyright law tries to strike the right balance between authors’ protection and the public interest to access information. If the
authors use contracts and/or technological-protection measures to go beyond copyright borders, the balance may break
down.305 The copyleft license uses both copyrights and contracts to achieve its goal; therefore the question of whether
copyright can be overruled by the content of the copyleft license arises.

The means by which authors try to use contracts to bypass copyright are many.306 A paradigmatic example is to avoid the
application of the first sale doctrine by not accepting that the software is sold, but instead insisting that it is only licensed.

2. Preemption

In a conflict between copyright provisions and contract clauses, one could think of adopting one of the two following extreme
solutions: always applying either copyright law or the agreement between the parties. However, neither approach is
satisfactory.307 To determine which rule should prevail, one needs to ask if the lack of protection under the copyright regime
is because a certain act should remain unprotected, or if the copyright provision is simply a default rule that does not prevent

protection under any other regimes, such as patents and contracts.

An optimal solution for the sake of certainty would be that the statute should distinguish between mandatory and default
copyright rules. However, this task *208 seems to be infeasible for the legislator, as such distinctions are not found in U.S.
law and only rarely in foreign legislation.308

As a consequence, hard cases about when copyright law will preempt the content of the contract are left to the courts, which
have had some difficulty in establishing clear guidelines in preemption cases based on contractual rights.309 The leading case
in this field establishes that “[a]lthough Congress possesses power to preempt even the enforcement of contracts about
intellectual property . . . courts usually read preemption clauses to leave private contracts unaffected.”310 This tendency to
favor contracts over copyright has been supported by the general acceptance of shrinkwrap/clickwrap licenses and the
approval of the UCITA.311 However, on occasions the courts have decided to preempt the content of the agreement, for
example, in relation to a license prohibiting reverse engineering.312

In any event, if the copyright holder achieves the extension of his rights through a contractual agreement, the infringement of
these rights will result in only one remedy against the infringing party under the rules of contract law.313 In other words, third
parties who fail to comply with the agreement while complying with copyright law will escape responsibility.

3. Deviations of the Copyleft Licenses from the Copyright Language

Generally, the GNU GPL uses the same language as the Copyright Act. However, there are some discrepancies. In particular,
the GNU GPL gives its own definition of derivative work,314 which differs from the one provided in the *209 Copyright
Act.315 These deviations will probably be more important in the third version of the GNU GPL, where, for example, the
concept of “propagation” is introduced,316 which is completely alien to copyright law.

The observed deviations seem to be minor and do not restrict access to information. Therefore, they would probably be
upheld by the courts. However, being part of a private agreement, these innovative definitions do not affect the rights of third
parties, whose activities will be controlled exclusively by copyright provisions.

IV. Conclusion

Since the release of the GNU Manifesto in 1985, the free software presence has continuously increased. Today, free software
represents a real alternative to proprietary software.

In the first part of the paper, I exposed the foundations and differences among the three main methods to license software:
free, open source, and proprietary.

“Free software” has two main features: first, it is free because it authorizes anyone to copy, distribute, and/or modify (i.e.
access the source code) the software; and second, it is copyleft because it forces any redistributor to recognize the right to
copy, distribute, and/or modify the software.

The concept of “open source software” emerged after “free software,” and it is used to refer to the software licenses which
authorize the licensees to copy, distribute, and/or modify the software. However, open source software licenses do not
necessarily oblige redistributors to recognize these same rights of their licensees. Therefore, it is generally true that “free
software” has become a subspecies of “open source software,” although there are some minor exceptions.

“Proprietary software,” in contrast with free and open source software, does not allow either modification, redistribution, or,
most commonly, a combination of those actions.

In the second part of the paper, I focused on the contractual issues in relation to free software and, in particular, the copyleft
clause. I also referred to the peculiarities introduced by the copyright nature of the subject matter.

The existence of a contract is characterized by the presence of agreement and exchange, which are not present in mere
licenses. Therefore, I consider that free *210 software licenses are Janus-like. On the one hand, they are a non-contractual
copyright license that allows end users private utilization of the program. On the other hand, they are a contractual license

that allows redistributors to copy, distribute, and/or modify the software under the condition of granting to any sublicensee
the right to copy, distribute, and/or modify the software.

As a consequence of the Janus-like nature of copyleft licenses, the relationship between the author of the program and the
end user is exclusively governed by the Copyright Act. In contrast, the agreement between the author and redistributor must
be examined not only under copyright law but also under contract law provisions.

The first issue arising due to the applicability of contract law concerns the element of consideration in the agreement, which
is indispensable for the existence of a valid contract. In my opinion, the consideration requirement is met in the relationship
between the author of the program (licensor) and redistributors (licensee) because the licensor authorizes modification and
distribution of the software, and, in exchange, the licensee promises to abide by the copyleft clause. In the relationship
between the author of the program and the end user, consideration is not necessary if one accepts that it is governed by a
non-contractual copyright license, and therefore only copyright rules are applicable.

The second issue, also related to the existence of a contract, refers to the enforceability requirements of shrinkwrap and
clickwrap licenses. Although the analysis of the relevant law does not allow for drawing very precise rules, the following
three elements must be taken into account: making conspicuous a notice related to the applicable license before delivery of
the program, delivery of the license itself, and the licensee’s manifestation of assent. Meeting all of these requirements
guarantees the enforceability of the shrinkwrap or clickwrap license. Moreover, the courts have shown some flexibility with a
partial compliance with these requirements. In any event, if the shrinkwrap or clickwrap license is not enforceable, the author
of the program will still be protected by copyright law.

The third issue puts into question the capability of the author of the program to file suit against downstream licensees,
noticing that they lack privity of contract. The proposition that the author is incapable of filing suit may have some merit,
although the privity doctrine has been recently relaxed. In any event, the author would still be protected by contract law
against his licensee and by copyright law against any other sublicensee.

The fourth issue addresses the validity of the warranty disclaimer included in most copyleft licenses. The question must be
answered by distinguishing between the position of the redistributor who licenses a computer program for a fee and the
author of a program who posts it on a website and does not charge anything in return. In the former case, the redistributor is a
merchant under the U.C.C. and an implied warranty crops up. However, this warranty may be disclaimed through a
conspicuous notice. Therefore, if the shrinkwrap or clickwrap license is *211 enforceable, it is most probable that the
warranty disclaimer will displace the implied warranty. In opposition, the author of the program is generally not a merchant,
and therefore the implied warranty does not emerge in the first place.

The fifth issue deals with the interrelation between copyright and contract law. Court decisions show a clear trend to accept
contract clauses that deviate from copyright law provisions. The courts only opt for preemption in rare cases. However, it
must be underlined again that the lack of privity could impede the enforcement of the license against third parties. In this
case, copyright law would be applicable.

Footnotes

a1

This paper has been written with the financial support of the Real Colegio Complutense. Dr. José J. González de Alaiza Cardona is
a professor at the University of the Balearic Islands. He received an LLM from Harvard in 2006. He would like to thank William
W. Fisher for his guidance and valuable suggestions, Gary Lam for his editing on the final draft, and the staff of the Texas
Intellectual Property Law Journal for their careful editing.

1

“‘Free software’ and ‘Open Source’ describe the same category of software, more or less, but say different things about the
software, and about values.” Richard Stallman, The GNU Operating System and the Free Software Movement, in Open
Sources--Voices from the Open Source Revolution 53, 70 (Chris DiBona et al. eds., 1999) [hereinafter Stallman, The GNU
Operating System], reprinted in Richard Stallman, Free Software, Free Society: Selected Essays of Richard M. Stallman 15
(Joshua Gay ed., 2002) [hereinafter Stallman, Free Software, Free Society]. In section II.E, infra, I will discuss the differences
between the two concepts.

2

Mainstream products “get applications, trained users, and momentum that reduces future risk.” David A. Wheeler, Why Open
Source Software/Free Software (OSS/FS, FLOSS, or FOSS)? Look at the Numbers!, Nov. 14, 2005, http://
www.dwheeler.com/oss_fs_why.html (last visited Oct. 1, 2006).

3

Whatis.com, What is Web Server?, http://whatis.techtarget.com (search “Look it up” for “web server”; follow “Read definition of
‘web server”’ hyperlink) (last visited Oct. 1, 2006) (“A Web server is a program that, using the client/server model and the World
Wide Web’s Hypertext Transfer Protocol (HTTP), serves the files that form Web pages to Web users (whose computers contain
HTTP clients that forward their requests). Every computer on the Internet that contains a Web site must have a Web server
program.” In other words, a web server gets the user the web page that she has requested.)

4

A recent Netcraft survey (March 2006) found that of all the web sites they could find, counting by name--web server hostnames
rather than physical computers--Apache had 68.70% of the market, Microsoft had 20.51%, Sun had 2.43%, and Zeus had 0.74%.
Netcraft.com: March 2006 Web Server Survey, http://
news.netcraft.com/archives/2006/03/06/march_2006_web_server_survey.html (last visited Oct. 1, 2006).

5

Representing 95%, according to data compiled by Bill Manning, a staff member at the University of Southern California’s
Information Sciences Institute. Bill Manning, In-addr version distribution (2q2000), http://
www.isi.edu/~bmanning/in-addr-versions.html, (last visited Oct. 1, 2006).

6

Webopedia, What is DNS?, http://www.webopedia.com/term/d/dns.html (last visited Oct. 1, 2006) (“Domain Name System (or
Service or Server), an Internet service that translates domain names [e.g., www.harvard.edu] into IP addresses. Because domain
names are alphabetic, they’re easier to remember. The Internet however, is really based on IP addresses. Every time you use a
domain name, therefore, a DNS service must translate the name into the corresponding IP address.”).

7

Internet Systems Consortium, Inc., ISC BIND, http:// www.isc.org/index.pl?/sw/bind (last visited Oct. 1, 2006) (“BIND (Berkeley
Internet Name Domain) is an implementation of the Domain Name System (DNS) protocols and provides an openly redistributable
reference implementation of the major components of the Domain Name System, including: a Domain Name System server
(named); a Domain Name System resolver library; and tools for verifying the proper operation of the DNS server.”).

8

Spread Firefox, 150 Million and Counting!, http:// www.spreadfirefox.com/node/22360 (last visited Oct. 1, 2006). Firefox was
released on November 9, 2004 and 99 days later had been downloaded 25 million times. On March 3, 2006, the numbers of
downloads was already 150 million. However, Firefox still has a modest market share (7%) in relation with its main competitor,
Internet Explorer (90%, adding versions 6.x and 5.x). TheCounter.com, The Full-Featured Web Counter, http://
www.thecounter.com/stats/2006/March/browser.php (last visited Oct. 1, 2006). The use of Netscape, the other open source
browser, is under 1% and decreasing. Id.

9

Spread Firefox, Thunderbird1.0 Reaches 1,000,000 Downloads, http:// www.spreadfirefox.com/node/8864 (last visited Oct. 1,
2006). Unlike numbers for web servers, a central site cannot get statistics about email clients unless it receives mail from the client.
That makes it much more difficult to obtain this information. However, due to the fact that non-open source web clients such as
Microsoft Outlook and Microsoft Outlook Express are installed simultaneously with the Windows operating system, one may
assume that Thunderbird is clearly behind its opponents.

10

Linus Torvalds, Just for Fun - The Story of an Accidental Revolutionary 161 (2001); Jason B. Wacha, Taking the Case: Is the GPL
Enforceable, 21 Santa Clara Computer & High Tech. L.J., 451, 452 (2005); see also Paul Gustafson & William Koff, Open Source:
Open for Business, Leading Edge F. (CSC, El Segundo, Cal.), Sept. 2004, at 55-59, available at http://
www.csc.com/features/2004/uploads/LEF_OPENSOURCE.pdf (last visited Oct. 1, 2006).

11

In a survey conducted of 1,452 companies and public institutions in Germany, Sweden, and the UK from June 2001 to June 2002,
it was observed that “the use of Open Source software on client or desktop computers is not very widespread. Only about 20% of
those establishments that use OSS have some form of OSS installed on their desktops.” Thorsten Wichmann, Part I: Use of Open
Source Software in Firms and Public Institutions, in FLOSS Final Report, Free/Libre Open Source Software: Survey and Study, at
41 (2002), http:// www.infonomics.nl/FLOSS/report (last visited Oct. 1, 2006).

12

Whatis.com, What is Operating System?, http://whatis.techtarget.com (search “Look it up” for “operating system”; follow “Read
definition of ‘operating system”’ hyperlink) (last visited Oct. 1, 2006) (“An operating system [i.e., GNU/Linux, Windows, etc.] is
the program that, after being initially loaded into the computer by a boot program, manages all the other programs in a computer.
The other programs are called applications or application programs [e.g., OpenOffice and Microsoft Office]. The application
programs make use of the operating system by making requests for services through a defined application program interface.”).

13

That was an approximate guess of the Linux Counter Project in March 2005. Linux Counter: Estimates on the Number of Linux
Users, http:// counter.li.org/estimates.php (last visited Oct. 1, 2006). Richard Stallman, the main developer of the GNU/Linux
operating system, stated in a speech given at New York University on May 29, 2001:
In general, in business most users are not using GNU/Linux. Most home users are not using our system yet. When they are, we
should automatically get 10 times as many volunteers and 10 times as many customers for the free software businesses that there
will be. And so that will take us that order of magnitude.
Stallman, Free Software, Free Society, supra note 1, at 179.

14

Ted Shadler, Your Open Source Strategy, Tech Strategy Rep. (Forrester Research, Inc., Cambridge, Mass.) Sept. 2003, at 2,
available at http://www.redhat.com/whitepapers/forrester/Forrester_OSS_Sep.pdf. Nevertheless, it may be surprising that there is a
high percentage--70%--of large companies that use the GNU/Linux operating system. Id. Moreover, GNU/Linux claim very
notable customers such as NASA, Torvalds, supra note 10, at 161, and the U.S. Army, Gustafson & Koff, supra note 10, at 59.

15

OpenOffice is an application suite--a set of applications that are designed to work together, which includes a word processor,
spreadsheet, presentation graphics and drawing program and provides access to popular databases. OpenOffice runs on Linux,
Windows, Mac and other operating systems.

16

MySQL is a database management system.

17

Gustafson & Koff, supra note 10, at 60. (“First released in 2000, OpenOffice has a 14 percent share of the large enterprise office
systems market, according to Forrester Research, suggesting it is becoming a true alternative to Microsoft Office, which holds a 94
percent share of the overall office market, has been around for over a decade, and claims 300 million users worldwide. Microsoft,
which in general has scoffed the open source approach, nonetheless recognizes the threat.”). On the other hand, MySQL was
declared to be used by 6% of U.S. large companies. Shadler, supra note 14, at 3. However, MySQL claims to be the number three
“Top Deployed Database” after SQL Server and Oracle. See MySQL AB, Market Share,
http://www.mysql.com/why-mysql/marketshare (last visited Oct. 1, 2006).

18

A leaked confidential document, known as Halloween I (author: Vinod Valloppillil; date: August 1998), explained the threat of
open source for Microsoft and the ways to compete with it. Steven Weber, The Success of Open Source 126, 127 (2004). This
memorandum has become a series which has been annotated and published by Eric S. Raymond. Eric S. Raymond, The Halloween
Documents, http://www.catb.org/~esr/halloween (last visited Oct. 1, 2006).

19

Gustafson & Koff, supra note 10, at 3; see also Wacha, supra note 10, at 452.

20

Gustafson & Koff, supra note 10, at 2; see also Jordi Mas i Hernàndez, Software Libre en el Sector Público, FUOC, Oct. 2003, at
9, 10, available at http://www.uoc.edu/dt/20327/20327.pdf (last visited Oct. 1, 2006).

21

Whatis.com, What is Hardware?, http://whatis.techtarget.com (search “Look it up” for “hardware”; follow “Read definition of
‘hardware”’ hyperlink) (last visited Oct. 1, 2006).

22

Whatis.com, What is Software?, http://whatis.techtarget.com (search “Look it up” for “software”; follow “Read definition of
‘software”’ hyperlink) (last visited Oct. 1, 2006).

23

“A text editor is a computer program that lets a user enter, change, store, and usually print text.” Whatis.com, What is Text Editor?,
http:// whatis.techtarget.com (search “Look it up” for “text editor”; follow “Read definition of ‘text editor”’ hyperlink) (last visited

Oct. 1, 2006). “The distinction between editors and word processors is not clear-cut, but in general, word processors provide many
more formatting features. Nowadays, the term editor usually refers to source code editors that include many special features for
writing and editing source code.” Webopedia, What is Editor?, http://www.webopedia.com/TERM/e/editor.html (last visited Oct.
1, 2006).

24

Webopedia, What is Programming Language?, http:// www.webopedia.com/term/p/programming_language.html (last visited Oct.
1, 2006) (A programming language is a “vocabulary and set of grammatical rules for instructing a computer to perform specific
tasks. The term programming language usually refers to high-level languages, such as BASIC, C, C++, COBOL, FORTRAN, Ada,
and Pascal. Each language has a unique set of keywords (words that it understands) and a special syntax for organizing program
instructions. High-level programming languages, while simple compared to human languages, are more complex than the
languages the computer actually understands, called machine languages.”).

25

Whatis.com, What is Object Code?, http://whatis.techtarget.com (search “Look it up” for “object code”; follow “Read definition of
‘object code”’ hyperlink) (last visited Oct. 1, 2006).

26

Whatis.com, What is Compiler?, http://whatis.techtarget.com (search “Look it up” for “compiler”; follow “Read definition of
‘compiler”’ hyperlink) (last visited Oct. 1, 2006).

27

Stallman, Free Software, Free Society, supra note 1, at 3.

28

Jonathan Zittrain, Normative Principles for Evaluating Free and Proprietary Software, 71 U. Chi. L. Rev. 265, 271 (2004).

29

Id.; Hernàndez, supra note 20, at 1-2.

30

Christian H. Nadan, Open Source Licensing: Virus or Virtue?, 10 Tex. Intell. Prop. L.J., 349, 351 (2002).

31

“To decompile is to convert executable (ready-to-run) program code (sometimes called object code) into some form of higher-level
programming language so that it can be read by a human. Decompilation is a type of reverse engineering that does the opposite of
what a compiler does.” Whatis.com, What is Decompile?, http://whatis.techtarget.com (search “Look it up” for “decompile”;
follow “Read definition of ‘decompile”’ hyperlink) (last visited Oct. 1, 2006).

32

Id. (“Decompilation is not always successful for a number of reasons. It is not possible to decompile all programs, and data and
code are difficult to separate, because both are represented similarly in most current computer systems. The meaningful names that
programmers give variables and functions (to make them more easily identifiable) are not usually stored in an executable file, so
they are not usually recovered in decompiling Programs can be designed to be resistant to decompilation through protective
means such as obfuscation.”).

33

Zittrain, supra note 28, at 271.

34

Zittrain, supra note 28, at 271.

35

See Digital Millennium Copyright Act, 17 U.S.C. §1201(f) (2000); Council Directive on the Legal Protection of Computer
Programs 91/250/EEC, art.6, 1991 O.J. (L 122) 45 (EC).

36

Final Report of the National Commission on New Technological Uses of Copyrighted Works 11 (1978), available at
http://digital-law-online.info/CONTU/PDF/chapter3.pdf.

37 Jesús González Barahona et al., Introducción al Software Libre 32 (2003).

38

Id.

39

Id.; see also Stallman, The GNU Operating System, supra note 1, at 53.

40

Stallman, The GNU Operating System, supra note 1, at 53; see Miquel A. Zarza, ?Qué es el Software Libre? Regulación y
Autoorganización, in Internet y Pluralismo Jurídico: Formas Emergentes de Regulación 297 (Pompeu Casanovas ed., Comares
2003).

41

Before the adoption of a legal response, the literature was divided between protection through the copyright laws or through the
patent system. Pamela Samuelson et al., Manifesto Concerning the Legal Protection of Computer Programs, 94 Colum. L. Rev.
2308, 2310 (1994).

42

Although the 1976 Copyright Act did not address the issue of the copyrightability of computer programs, “[i]n 1964, the Register
of Copyrights announced that computer programs would be accepted for registration, provided that (1) they contained sufficient
original authorship, (2) they had been published, and (3) copies submitted for registration were in human-readable form.” Nat’l
Comm’n on New Technological Uses of Copyrighted Works, Final Report of the National Commission on New Technological
Uses of Copyrighted Works 15 (1978), available at http://digital-law-online.info/CONTU/PDF/Chapter3.pdf. The National
Commission on New Technological Uses of Copyrighted Works stated that “it was clearly the intent of Congress to include
computer programs within the scope of copyrightable subject matter in the Act of 1976.” Id. at 16.

43

The National Commission on New Technological Uses of Copyrighted Works described this process in a very detailed form:
As the number of computers has increased dramatically, so has the number of programs with which they may be used. While the
first computers were designed and programmed to perform one or a few specific tasks, an ever increasing proportion of all
computers are general-purpose machines which perform diverse tasks, depending in part upon the programs with which they are
used. Early programs were designed by machine manufacturers to be used in conjunction with one model or even one individual
computer. Today, many programs are designed to operate on any number of machines from one or more manufacturers. In
addition, and perhaps even more importantly, there is a growing proportion of programs created by persons who do not make
machines. These people may be users or they may be--and increasingly are--programmers or small firms who market their wares
for use by individual machine owners who are not in a position to write their own programs.
Nat’l Comm’n on New Technological Uses of Copyrighted Works, Final Report of the National Commission on New
Technological Uses of Copyrighted Works 10-11 (1978), available at http://digital-law-online.info/CONTU/PDF/Chapter3.pdf.

44

Act of Dec. 12, 1980, Pub. L. No.96-517,94 Stat. 3015, 3028. Although computer programs are not expressly quoted in the works
of authorship list of section102(a) of the U.S. Copyright Act, the introduction of a computer software definition in section101 (“A
‘computer program’ is a set of statements or instructions to be used directly or indirectly in a computer in order to bring about a
certain result”) and an exception to make copies or adaptations to use the computer program or for archival purposes in section117
were enough for the courts to consider that “the copyrightability of computer programs is firmly established after the 1980
amendment to the Copyright Act.” Williams Elecs., Inc. v. Artic Int’l, Inc., 685 F.2d 870, 875 (3d Cir. 1982); TseeT also Apple
Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1248 (3d Cir. 1983).

45

Council Directive on the Legal Protection of Computer Programs91/250/EEC, art.5.2, 1991 O.J. (L 122) 44 (EC).

46

“Computer programs, whether in source or object code, shall be protected as literary works under the Berne Convention (1971).”
Agreement on Trade-Related Aspects of Intellectual Property Rights art. 10(1), Apr. 15, 1994, Marrakesh Agreement Establishing
the World Trade Organization, Annex 1C, Legal Instruments--Results of the Uruguay Round, 33 I.L.M. 1125, 1201, available at
http://www.wto.org/English/docs_e/legal_e/27-trips.pdf.

47

“Computer programs are protected as literary works within the meaning of Article2 of the Berne Convention. Such protection
applies to computer programs, whatever may be the mode or form of their expression.” WIPO Copyright Treaty art.4, Dec. 20,
1996, 36 I.L.M. 65, available at http:// www.wipo.int/treaties/en/ip/wct/pdf/trtdocs_wo033.pdf.

48

Nadan, supra note 30, at 351.

49

FSF--The Free Software Foundation, http://www.fsf.org (last visited Oct. 1, 2006).

50

“Richard Stallman is the God of Free Software.... Basically, he pioneered the notion of free source-code availability as something
intentional, not just an accident, the way it happened with original Unix open development.” Torvalds, supra note 10, at 58; see
also Eric S. Raymond, A Brief History of Hackerdom, in Open Sources--Voices from the Open Source Revolution 19, 24 (Chris
DiBona et al. eds., 1999).

51

Stallman, The GNU Operating System, supra note 1, at 54-55.

52

Stallman, The GNU Operating System, supra note 1, at 54-55.

53

Stallman, Free Software, Free Society, supra note 1, at 41-42 (“[Y]ou should be free to redistribute copies, either with or without
modifications, either gratis or charging a fee for distribution, to anyone anywhere. Being free to do these things means (among
other things) that you do not have to ask or pay for permission.” In other words, “[y]ou may have paid money to get copies of free
software, or you may have obtained copies at no charge. But regardless of how you got your copies, you always have the freedom
to copy and change the software”).

54

“In order for freedoms 1 and 3 (the freedom to make changes and the freedom to publish improved versions) to be meaningful, one
must have access to the source code of the program. Therefore, accessibility of source code is a necessary condition for free
software.” Richard Stallman, Free Software, Free Society, supra note 1, at 41.

55

Chris DiBona et al., Introduction to Open Sources--Voices from the Open Source Revolution 1, 2 (Chris DiBona et al. eds., 1999).

56

Stallman, The GNU Operating System, supra note 1, at 54.

57

Categories of Free and Non-Free Software, http:// www.gnu.org/philosophy/categories.html (last visited Oct. 1, 2006).

58

“So that I can continue to use computers without violating my principles, I have decided to put together a sufficient body of free
software so that I will be able to get along without any software that is not free.” Richard Stallman, Initial Announcement of the
GNU Project (1983), http:// www.gnu.org/gnu/initial-announcement.html (last visited Oct. 1, 2006).

59

Whatis.com, What is Operating System?, supra note 12.

60

Stallman, The GNU Operating System, supra note 1, at 55.

61

“The name GNU was chosen following a hacker tradition, as a recursive acronym for ‘GNU’s Not Unix.”’ Stallman, The GNU
Operating System, supra note 1, at 56.

62

In September 1983, Stallman made the Initial Announcement of the GNU Project. A longer version called the GNU Manifesto was
published in September 1985. Overview of the GNU System http://www.gnu.org/gnu/gnu-history.html (last visited Oct. 1, 2006).
Moreover, in 1985 the Free Software Foundation, a tax-exempt charity for free software development, was created. Stallman, The
GNU Operating System, supra note 1, at 60.

63 Webopedia, What is UNIX?, http://www.webopedia.com/TERM/u/unix.html (last visited Oct. 1, 2006) (“Pronounced yoo-niks, a

 popular multi-user, multitasking operating system developed at Bell Labs in the early 1970s. Created by just a handful of
programmers, UNIX was designed to be a small, flexible system used exclusively by programmers. UNIX was one of the first
operating systems to be written in a high-level programming language, namely C. This meant that it could be installed on virtually
any computer for which a C compiler existed.... Due to its portability, flexibility, and power, UNIX has become a leading operating
system for workstations. Historically, it has been less popular in the personal computer market.”).

64

“When used to describe software, portable means that the software has the ability to run on a variety of computers. Portable and
machine independent mean the same thing--that the software does not depend on a particular type of hardware.” Webopedia, What
is Portable?, http:// www.webopedia.com/TERM/p/portable.html (last visited Oct. 1, 2006).

65

Stallman, The GNU Operating System, supra note 1, at 56; Overview of the GNU System, supra note 62.

66

Barahona et al., supra note 37, at 35.

67

Barahona et al., supra note 37, at 35.

68

Stallman, The GNU Operating System, supra note 1, at 62. The recursive acronym GNU pays tribute to the importance of Unix in
the GNU Project.

69

Overview of the GNU System, supra note 62.

70

Webopedia, What is Kernel?, http:// www.webopedia.com/TERM/k/kernel.html (last visited Oct. 1, 2006). It is still fair to make
the point that “[a]n operating system does not mean just a kernel, barely enough to run other programs. In the 1970s, every
operating system worthy of the name included command processors, assemblers, compilers, interpreters, debuggers, text editors,
mailers, and much more.” Stallman, The GNU Operating System, supra note 1, at 56.

71

Overview of the GNU System, supra note 62; Barahona et al., supra note 37, at 45-46.

72

There is some controversy in using the term GNU/Linux or only Linux. Stallman states that “[i]f you call our operating system
‘Linux,’ that conveys a mistaken idea of the system’s origin, history, and purpose. If you call it ‘GNU/Linux,’ that conveys
(though not in detail) an accurate idea.” Stallman, Free Software, Free Society, supra note 1, at 51. Moreover, Stallman states:
[o]ne CD-ROM vendor found that in their ‘Linux distribution,’ GNU software was the largest single contingent, around 28% of the
total source code, and this included some of the essential major components without which there could be no system. Linux itself
was about 3%. So if you were going to pick a name for the system based on who wrote the programs in the system, the most
appropriate single choice would be ‘GNU.’
Richard Stallman, Linux and the GNU Project, http://www.gnu.org/gnu/linux-and-gnu.html (last visited Oct. 1, 2006); see also
Zittrain, supra note 28, at 268. However, Linus Torvalds suggests that the use of the term Linux is just fine. Torvalds, supra note
10, at 163.

73

See Stallman, Free Software, Free Society, supra note 1, at 125.

74

“[O]pen source can be seen as a revolutionary new way of doing and distributing software” Mikko Välimäki, The Rise of Open
Source Licensing--A Challenge to the Use of Intellectual Property in the Software Industry 6 (2005), available at
http://pub.turre.com/openbook_valimaki.pdf.

75

Stallman, Free Software, Free Society, supra note 1, at 41.

76 Stallman, Free Software, Free Society, supra note 1, at 48.

77

Categories of Free and Non-Free Software, supra note 57.

78

Stallman, Free Software, Free Society, supra note 1, at 47-48.

79

Stallman, Free Software, Free Society, supra note 1, at 124-126.

80

Stallman, Free Software, Free Society, supra note 1, at 126.

81

Stallman, Free Software, Free Society, supra note 1, at 122. In comparison, thinks Stallman, the cost of production of material
objects is significant, and therefore it is fair to add a share of the development cost, which does not make a qualitative difference.
More moderated free software supporters are as well against the strict enforcement of copyright laws in case of illegal
reproductions. Torvalds, supra note 10, at 97.

82

Richard Stallman, The GNU Manifesto, http:// www.gnu.org/gnu/manifesto.html (emphasis added) (last visited Oct. 1, 2006).

83

Id. Another term that causes some confusion is “freeware,” that is, “[c]opyrighted software given away for free by the author.
Although it is available for free, the author retains the copyright, which means that you cannot do anything with it that is not
expressly allowed by the author. Usually, the author allows people to use the software, but not sell it.” Webopedia, What is
freeware?, http://www.webopedia.com/term/f/freeware.html (last visited Oct. 1, 2006). Freeware is not free software, as its source
code may not be delivered, and it may not permit its redistribution.

84

Stallman, The GNU Operating System, supra note 1, at 57.

85

Stallman, The GNU Operating System, supra note 1, at 57.

86

See Brian W. Carver, Share and Share Alike: Understanding and Enforcing Open Source and Free Software Licenses, 20 Berkeley
Tech. L.J. 443, 447 (2005); Raymond Nimmer, Legal Issues in Open Source and Free Software Distribution, in 861 Critical Issues
in Today’s Corporate Environment 7, 11 (Practising L. Inst. 2006).

87

Nadan, supra note 30, at 358.

88

Nadan, supra note 30, at 358.

89

Nadan, supra note 30, at 358-59.

90

GNU Project, GNU General Public License, http:// www.gnu.org/copyleft/gpl.html (last visited Oct. 1, 2006).

91

Id. (The Preamble of the GNU GPL reads: “We protect your rights with two steps: (1) copyright the software, and (2) offer you
this license which gives you legal permission to copy, distribute and/or modify the software.”).

92

Zittrain, supra note 28, at 268-69.

93 Stallman, Free Software, Free Society, supra note 1, at 89.

94

Stallman, The GNU Operating System, supra note 1, at 59 (Stallman explains the origin of the term: “In 1984 or 1985, Don
Hopkins (a very imaginative fellow) mailed me a letter. On the envelope he had written several amusing sayings, including this
one: ‘Copyleft-all rights reversed.’ I used the word ‘copyleft’ to name the distribution concept I was developing at the time.”).

95

The literature has described this maneuver in the most diverse forms: “flips [copyright law] over,” Richard Stallman, The GNU
Operating System, supra note 1, at 59; “turn[s] normal copyright on its head,” John C. Yates & Paul H. Arne, Open Source
Software Licenses: Perspectives of the End User and the Software Developer, in 823 Twenty-Fifth Ann. Inst. On Computer &
Internet L. 97, 104 (Practising L. Inst. 2005); or, even, as “a form of legal jujitsu,” Zittrain, supra note 28, at 269.

96

See Open Source Initiative, The BSD License, http:// www.opensource.org/licenses/bsd-license.php (last visited Oct. 1, 2006); see
also Barahona et al., supra note 37, at 76 (The BSD license allows both the distribution as source code or as object code, and the
single demand is to give credit to the original authors.).

97

Zittrain, supra note 28, at 269.

98

Whatis.com, What is Hacker?, http://whatis.techtarget.com (search “Look it up” for “hacker”; follow “Read definition of ‘hacker”’
hyperlink) (last visited Oct. 1, 2006) (“Hacker is a term used by some to mean ‘a clever programmer’ and by others, especially
journalists or their editors, to mean ‘someone who tries to break into computer systems.”’).

99

GNU Project, GNU General Public License, supra note 90, §§1-4.

100

Eric S. Raymond, The Cathedral & the Bazaar--Musings on Linux and Open Source by an Accidental Revolutionary 60, 61
(revised 1st ed. 2001); Stallman, Free Software, Free Society, supra note 1, at 127-128.

101

Raymond, supra note 100, at 84.

102

Stallman, Free Software, Free Society, supra note 1, at 128-129.

103

See Frank Hecker, Setting Up Shop: The Business of Open-Source Software (2000),
http://www.hecker.org/writings/setting-up-shop (last visited Oct. 1, 2006); Sandeep Krishnamurthy, Cave or Community? An
Empirical Examination of 100 Mature Open Source Projects, First Monday, vol.7, num.6, June 3, 2002,
http://www.firstmonday.org/issues/issue7_6/krishnamurthy.

104

Raymond, supra note 100, at 27.

105

Raymond, supra note 100, at 27-30.

106

Raymond, supra note 100, at 27-30.

107

Raymond, supra note 100, at 58.

108

Raymond, supra note 100, at 29-30.

109 Raymond, supra note 100, at 41; see also Stallman, The GNU Operating System, supra note 1, at 55; Torvalds, supra note 10, at

 226-227.

110

Krishnamurthy, supra note 103.

111

Raymond, supra note 100, at 67-68.

112

See Raymond, supra note 50, at 70-73.

113

Nikolai Bezroukov, A Second Look at the Cathedral and the Bazaar, First Monday, vol.4, num.12, Dec. 6, 1999, http://
www.firstmonday.org/issues/issue4_12/bezroukov.

114

Barahona et al., supra note 37, at 203.

115

Barahona et al., supra note 37, at 204.

116

Nat’l Comm’n on New Technological Uses of Copyrighted Works, Final Report of the National Commission on New
Technological Uses of Copyrighted Works 11 (1978), available at http://digital-law-online.info/CONTU/PDF.

117

Id.

118

See Torvalds, supra note 10, at 227.

119

Stallman, The GNU Operating System, supra note 1, at 54.

120

Hecker, supra note 103.

121

Whatis.com, What is Red Hat?, http://whatis.techtarget.com (search “Look it up” for “red hat”; follow “Read definition of ‘red
hat”’ hyperlink) (last visited Oct. 1, 2006) (“Red Hat is a leading software company in the business of assembling open source
components for the Linux operating system and related programs into a distribution package that can easily be ordered. Red Hat
provides over 400 different software packages The advantages to buying the distribution from Red Hat rather than assembling it
at no cost yourself from various sources is that you get it as a single assembled package. Red Hat also offers service that isn’t
provided as quickly by the individual component developers, including members of the Free Software Foundation. Like all free
software, Red Hat’s packages allow the buyer to modify and even resell modified versions of code as long as they do not restrict
anyone else from further modification.
Red Hat was one of the first companies to realize that ‘free’ software could be sold as a product. After examining the successful
marketing campaign of Evian water, Red Hat concluded that to achieve success, the company had to create more Linux users and
brand Red Hat as the Linux name that customers preferred. Today, the ‘Red Hat Plan’ is discussed as a model in business
schools.”).

122

Barahona et al., supra note 37, at 118-19.

123

Hecker, supra note 103.

124

Open Source Initiative, History of the OSI, http:// www.opensource.org/docs/history.php (last visited Oct. 1, 2006).

125

Id.

126

Id.

127

Open Source Initiative, Why “Free” Software is Too Ambiguous, http://www.opensource.org/advocacy/free-notfree.php (last
visited Oct. 1, 2006)

128

Two of the most popular Open Source Software websites, Freshmeat.net and Sourceforge.net, confirm this fact. See Freshmeat.net,
Statistics and Top 20, http://freshmeat.net/stats (last visited April 29, 2006) (out of approximately 43,000 projects, up to 66.79%
use the GNU GPL, the LGPL is used in up to 6.29% and BSD licenses both original and revised, are used in up to 5.58%); see also
SourceForge.net: Software Map, http:// sourceforge.net/softwaremap (last visited Oct. 1, 2006) (of 118.615 registered users, 51,533
are using the GNU GPL (43.44%); 9,055 the LGPL (7.63%); and 5,716 (4.82%)).

129

Open Source Initiative, Why “Free” Software is too Ambiguous, http://www.opensource.org/advocacy/free-notfree.php (“Some
software is called ‘free’ because it costs no money to download or use--but source code is not available. The license that covers
Microsoft Internet Explorer is a good example. Some software is called ‘free’ because it (and the source code for it) has been
placed in the ‘public domain,’ free from copyright restrictions. A lot of software is called ‘free’ even though the source code for it
is covered by copyright and a license agreement. The license usually includes a disclaimer of reliability, and may contain
additional restrictions. The restrictions on non-public-domain ‘free’ software range from mild to severe. Some licenses may
prohibit (or require a fee for) commercial use or redistribution. Some licenses may prohibit distributing modified versions. Some
licenses may contain ‘copyleft’ restrictions requiring that the source code must always be made available, and that derived
products must be released under the exact same license. Some licenses may discriminate against individuals or groups.”) (last
visited Oct. 1, 2006).

130

Open Source Initiative, supra note 129.

131

Categories of Free and Non-Free Software, supra note 57 (“Semi-free software is software that is not free, but comes with
permission for individuals to use, copy, distribute, and modify (including distribution of modified versions) for non-profit
purposes. PGP is an example of a semi-free program.”).

132

Stallman, Free Software, Free Society, supra note 1, at 56.

133

Why “Free Software” Is Better Than “Open Source,” http:// www.gnu.org/philosophy/free-software-for-freedom.html (last visited
Oct. 1, 2006) (“To prevent people from thinking we are part of them, we take pains to avoid using the word ‘open’ to describe free
software, or its contrary, ‘closed,’ in talking about non-free software.”).

134

See Open Source Initiative OSI, The Open Source Definition §§1-2, http://www.opensource.org/docs/definition/php (last visited
Sept. 8, 2006); see also Categories of Free and Non-Free Software http://
www.gnu.org/philosophy/categories.html#ProprietarySoftware (last visited Oct. 1, 2006).

135

See Proprietary Software, http://en.wikipedia.org/wiki/Closed_ software (last visited Oct. 1, 2006).

136

Andrés Guadamuz González, Viral Contracts or Unenforceable Documents? Contractual Validity of Copyleft Licences, 26(8) Eur.
Intell. Prop. Rev. 331, 332-33 (2004).

137

Working Group on Libre Software, Free Software/Open Source: Information Society Opportunities for Europe? 5 n.2 Info. Soc’y
Directorate Gen. of the European Comm’n, Working Paper Version 1.2, Apr. 2000, http:// eu.conecta.it/paper.pdf.

138 Wichmann, supra note 11, at 41.

139

Open Source Initiative, OSI Certification Mark and Program, http:// www.opensource.org/docs/certification_mark.php (last visited
Oct. 1, 2006) (The Open Source Initiative has even created a certification for the licenses complying with the conditions of the
Open Source Definition: “We think the Open Source Definition captures what the great majority of the software community
originally meant, and still mean, by the term ‘Open Source.’ However, the term has become widely used and its meaning has lost
some precision. The OSI Certified mark is OSI’s way of certifying that the license under which the software is distributed
conforms to the OSD; the generic term ‘Open Source’ cannot provide that assurance, but we still encourage use of the term ‘Open
Source’ to mean conformance to the OSD.”).

140

Free Software Foundation, The Free Software Definition, http:// www.gnu.org/philosophy/free-sw.html (last visited Sept. 8, 2006).

141

The Open Source Definition, supra note 134.

142

The Open Source Definition, supra note 134.

143

The Open Source Definition, supra note 134.

144

The Open Source Definition, supra note 134.

145

Whatis.com, What is Patch?, http://whatis.techtarget.com (search “Look it up” for “patch”; follow “Read definition of ‘patch”’
hyperlink) (last visited Sept. 8, 2006) (“A patch (sometimes called a ‘fix’) is a quick-repair job for a piece of programming. During
a software product’s beta test distribution or try-out period and later after the product is formally released, problems (called bug[s])
will almost invariably be found. A patch is the immediate solution that is provided to users.... A patch is usually developed and
distributed as a replacement for or an insertion in compiled code (that is, in a binary file or object module).”).

146

The Open Source Definition, supra note 134.

147

The Open Source Definition, supra note 134.

148

The Open Source Definition, supra note 134.

149

The Open Source Definition, supra note 134.

150

The Open Source Definition, supra note 134.

151

The Open Source Definition, supra note 134.

152

The Open Source Definition, supra note 134.

153

The literature has pointed out that “[t]he four freedoms are consistent with (albeit broader than) the criteria employed by the Open
Source Initiative.” Nadan, supra note 30, at 357.

154

Nadan, supra note 30, at 357 (“The freedom to run the program....”); see The Open Source Definition, supra note 134.

155

Nadan, supra note 30, at 357 (“The freedom to redistribute copies of the program.”); The Open Source Definition, supra note 134.

156

Nadan, supra note 30, at 357 (“The freedom to access the source code, and modify it.... The freedom to release your modifications
to the public.”); The Open Source Definition, supra note 134.

157

Nimmer, supra note 86, at 16-17.

158

Open Source Initiative OSI, The Open Source Definition, supra note 134.

159

Open Source Initiative, The Approved Licenses, http:// www.opensource.org/licenses (last visited Oct. 1, 2006).

160

Various Licenses and Comments about Them, http:// www.gnu.org/licenses/license-list.html (last visited Oct. 1, 2006).

161

Id. (“The Reciprocal Public License is a non-free license because of three problems. 1. It puts limits on prices charged for an initial
copy. 2. It requires notification of the original developer for publication of a modified version. 3. It requires publication of any
modified version that an organization uses, even privately.”).

162

Stallman, Free Software, Free Society, supra note 1, at 122-126.

163

Stallman, Free Software, Free Society, supra note 1, at 55.

164

César Iglesias Rebollo, Otra forma de distribuir software: las licencias de software libre o de código abierto, 2 Revista General de
Legislación y Jurisprudencia 219, 223 (2004).

165

González, supra note 136, at 332.

166

Open Source Initiative, History of the OSI, http:// www.opensource.org/docs/history.php (last visited Oct. 1, 2006).

167

Rebollo, supra note 164, at 223.

168

The BSD license has an original and a modified version, with the difference that the modified version has removed the obligation
to acknowledge the development done by the University of California, Berkeley and its contributors. Xfree86.org, Other
Copyrights, http://www.xfree86.org/3-3.6/COPYRIGHT2.html (discussing the original version in the section titled “UCB/LBL”
and the modified version in the section titled “General”).

169

Various Licenses and Comments about Them, supra note 160.

170

Stallman, Free Software, Free Society, supra note 1, at 55.

171

Richard Stallman and the copyleft advocates had been criticized for using copyright to achieve a system which is apparently
contrary to copyright itself. González, supra note 136, at 334. The answer that Stallman gives to this criticism is that the use of the
copyleft clause doesn’t mean that we are in favour of copyright law as a general matter. We’re not totally against copyright law, in
a simple or blanket sense either, but we’re not defending the global copyright system that has mostly been imposed on the world
merely because we use it because it’s there. And that has to be very clear. We are not endorsing the Berne plus WTO system of
copyright law as it stands as a good thing, but it exists and whatever harm it may do in other areas, we’re trying to do some good

with it when we can.
Transcript of Opening Session of First International GPLv3 Conference, Boston, January 16, 2006,
http://www.ifso.ie/documents/gplv3-launch-2006-01-16.html (last visited Oct. 1, 2006). Even under a more conservative view, a
fair point that may be made is that copyright is not as much about control of the exclusive rights as about promoting the progress of
science and useful arts. And from this latter perspective copyright and copyleft may not be that distant.

172

Nimmer, supra note 86, at 53; González, supra note 136, at 334.

173

Some authors prefer to use the term “reciprocal.” E.g., Carver, supra note 86, at 447; Nimmer, supra note 86, at 15.

174

Margaret Jane Radin, Humans, Computers, and Binding Commitment, 75 Ind. L.J. 1125, 1132 (2000); Stephen Mutkoski, Open
Source Software Issues in Acquisitions and Other Inbound Transactions, in 861 Open Source Software: Critical Issues in Today’s
Corp. Env’t 337, 342-47 (Practising L. Inst. 2006) (The term “viral” must be used carefully, as the literature has attributed to it a
second meaning. In particular, referring to a copyleft license as “viral” may intend to evoke the belief that using free software code
in a proprietary program can lead to the obligation to release the entire work as open source software.).

175

In the GPLv3 First Discussion Draft, the copyleft provision is moved to section5b and three clarifications are introduced: it states
that the GPL applies to the whole work; it removes the words “at no charge,” which were often misinterpreted by commentators;
and the last sentence of section5b explicitly recognizes the validity of disjunctive dual-licensing. Free Software Foundation,
GPLv3 First Discussion Draft Rationale 12 (2006), available at http://gplv3.fsf.org/gpl-rationale-2006-01-16.pdf.

176

See World Intellectual Property Organization, Treaties and Contracting Parties: Berne Convention for the Protection of Literary
and Artistic Works, http://www.wipo.int/treaties/en/ip/berne (last visited Sept. 30, 2006) (listing 162 contracting parties).

177

See World Intellectual Property Organization, Treaties and Contracting Parties: Rome Convention for the Protection of Performers,
Producers of Phonograms and Broadcasting Organizations, http:// www.wipo.int/treaties/en/ip/rome (last visited Sept. 30, 2006)
(listing 83 contracting parties).

178

See World Intellectual Property Organization, Treaties and Contracting Parties: WIPO Copyright Treaty, http://
www.wipo.int/treaties/en/ip/wct (last visited Sept. 30, 2006) (listing 60 contracting parties).

179

See World Intellectual Property Organization, Treaties and Contracting Parties: WIPO Performances and Phonograms Treaty,
http:// www.wipo.int/treaties/en/ip/wppt (last visited Sept. 30, 2006) (listing 58 contracting parties).

180

See World Trade Organization, Understanding the WTO: Members and Observers,
http://www.wto.org/english/thewto_e/whatis_e/tif_e/org6_e.htm (last visited Sept. 30, 2006) (listing 149 member states as of
December 11, 1995).

181

See European Commission, Copyright and Neighbouring Rights, http:// ec.europa.eu/internal_market/copyright/index_en.htm (last
visited Sept. 30, 2006) (describing the eight directives: Enforcement, Resale Right, Copyright in the Information Society,
Protection of Databases, Term of Protection, Satellite and Cable, Rental and Lending Right, and Protection of Computer
Programs).

182

Wacha, supra note 10, at 455-56.

183

Nimmer, supra note 86, at 25.

184

Eben Moglen, Enforcing the GNU GPL, Gnu Project, Sept. 10, 2000, http://www.gnu.org/philosophy/enforcing-gpl.html; Pamela
Jones, The GPL Is a License, not a Contract, LWN.net, Dec. 3, 2003, http://lwn.net/Articles/61292/.

185

Lawrence E. Rosen, Open Source Licensing: Software Freedom and Intell. Prop. L. 55 (Prentice Hall 2005).

186

Jones, supra note 184. A similar definition states that “[a] license is a unilateral abrogation of rights. The licensor has, by law, the
ability to enforce certain rights against the licensee, and the license functions as a promise not to enforce those rights.” Wacha,
supra note 10, at 456.

187

Rosen, supra note 185, at 51.

188

Free Software Foundation, GNU General Public License: Discussion Draft 1 of Version 3, §9 (Jan. 16, 2006),
http://gplv3.fsf.org/gpl-draft-2006-01-16.html. In the subsequent discussion draft, the title of section9 was changed from “Not a
Contract” to “Acceptance Not Required for Having Copies.” Compare id. with Free Software Foundation, GNU General Public
License: Discussion Draft 2 of Version 3, §9 (Jul. 27, 2006), http://gplv3.fsf.org/gpl-draft-2006-07-27.html.

189

The Free Software Foundation gives to the infringer the following choice: “you can stop using the stolen code and write your own,
or you can decide you’d rather release under the GPL.” Jones, supra note 184. “In approximately a decade of enforcing the GPL, I
have never insisted on payment of damages to the Foundation for violation of the license, and I have rarely required public
admission of wrongdoing.” Moglen, supra note 184.

190

Restatement (Second) of Contracts §1 (1981).

191

Restatement (Second) of Contracts §2.

192

E. Allan Farnsworth, Contracts 3 (4th ed., Aspen Publishers 2004).

193

Unif. Computer Info. Transactions Act §102(a)(41) (amended 2002), 7(2) U.L.A. 208 (Supp. 2006).

194

ISC-Bunker Ramo Corp. v. Altech, Inc., 765 F. Supp. 1310, 1331 (N.D. Ill. 1990).

195

“Notwithstanding the provisions of section106(3) [distribution right], the owner of a particular copy or phonorecord lawfully made
under this title, or any person authorized by such owner, is entitled, without the authority of the copyright owner, to sell or
otherwise dispose of the possession of that copy or phonorecord.” Copyright Act of 1976, 17 U.S.C. §109(a) (2000). House
Report94-1476 underlines that §109(a) of the Copyright Act “restates and confirms the principle that, where the copyright owner
has transferred ownership of a particular copy or phonorecord of a work, the person to whom the copy or phonorecord is
transferred is entitled to dispose of it by sale, rental, or any other means.” H.R. Rep. No.94-1476, at 79 (1976), as reprinted in 1976
U.S.C.A.N. 5659, 5693.

196

I.LAN Sys., Inc. v. Netscout Serv. Level Corp., 183 F. Supp. 2d 328, 331-32 (D. Mass 2002) (internal citations omitted) (“So is the
purchase of software a transaction in goods? Despite Article 2’s requirement of a sale, courts in Massachusetts have assumed,
without deciding, that Article 2 governs software licenses.... Admittedly, the UCC technically does not govern software licenses,...
[but] the UCC best fulfills the parties’ reasonable expectations.”); Phillip Johnson, All Wrapped Up? A Review of the
Enforceability of “Shrink-wrap” and “Click-wrap” Licenses in the United Kingdom and the United States, 25 Eur. Intell. Prop.
Rev. 98, 100 (2003).

197

ProCD, Inc. v. Zeidenberg, 86 F.3d 1447, 1449 (7th Cir. 1996).

198 Diane Rowland & Andrew Campbell, Supply of Software: Copyright and Contract Issues, 10 Int’l J.L. & Info. Tech. 23, 25-26

 (2002).

199

Moglen, supra note 184.

200

17 U.S.C. §106(1) (2000).

201

This license to use the work for private purposes has been included in the GPLv3 First Discussion Draft: “Propagation of covered
works is permitted without limitation provided it does not enable parties other than you to make or receive copies.” GNU General
Public License: Discussion Draft 1 of Version 3, supra note 188, §2. The term “propagation” is an invention of the GPLv3 drafter
and includes approximately all the exclusive rights of the copyright holder. GNU General Public License: Discussion Draft 1 of
Version 3, supra note 188, §0 (“To ‘propagate’ a work means doing anything with it that requires permission under applicable
copyright law, other than executing it on a computer or making private modifications. This includes copying, distribution (with or
without modification), sublicensing, and in some countries other activities as well.”).

202

GNU General Public License: Discussion Draft 1 of Version 3, supra note 188, §0.

203

Rosen, supra note 185, at 52.

204

Free Software Foundation, GNU General Public License, Version 2, §5 (June 1991), http://www.gnu.org/licenses/gpl.html.

205

Wacha, supra note 10, at 482 (“Under the GPL, one of the main obligations of the licensee is to disclose the source code. This
obligation could only be enforceable under a contract theory, as opposed to a license theory.”).

206

See Peter Brown, Legal Issues in the Open Source Community, in 780 Twenty-Fourth Ann. Inst. on Computer L. 309, 317-18
(Practising L. Inst. 2004) (“In exchange for the rights granted by the open source licensor, the licensee has certain obligations.”);
see also Thomas Hoeren, Open Source und das Schenkungsrecht--eine durchdacte Liason?, Recht und Risiko, Festschrift für
Helmut Kollhosser zum 70 Geburtstag 229, 237 (Reinhard Bork ed., 2004) (supporting the exchange concept).

207

See Wacha, supra note 10, at 456 (citing pleadings in Progressive Software Corp. v. MySQL AB, 195 F. Supp. 2d 328 (D. Mass.
2002) and MontaVista Software, Inc. v. Lineo, Inc., No.2:02 CV-0309J (D. Utah filed July 23, 2003), which settled in 2003).

208

“[T]he panel has no doubt whatsoever that the general business conditions have been effectively incorporated into a possible
contractual relationship between the defendant and the plaintiff pursuant to German Civil Code Section305 Para.2.” Landgericht
München I [LG] [District Court of Munich I], No.21 O6123/04, May 19, 2004, at 9, http://www.jbb.de/judgment_dc_
munich_gpl.pdf (unofficial English translation) (official German opinion available at
http://www.jbb.de/urteil_lg_muenchen_gpl.pdf); see LG München I: Wirksamkeit einer GPL-Lizenz, 20 Computer und Recht 774,
774-80 (2004); see also Peter Brown, Beyond SCO v. IBM: Other Legal Issues in the Open Source Community, in 808 Open
Source Software: Risks, Benefits & Practical Realities in the Corp. Env’t. 103, 113-14 (Practising L. Inst. 2004).

209

Mills v. Wyman, 20 Mass. (3 Pick.) 207 (1825) (“It is only when the party making the promise gains something, or he to whom it
is made loses something, that the law gives the promise validity.”).

210

Id.

211

Restatement (Second) of Contracts §71 (1981).

212 Farnsworth, supra note 192, at 48.

213

Whitney v. Stearns, 16 Me. 394 (1839) (“A cent or a pepper corn, in legal estimation, would constitute a valuable consideration.”).

214

Rosen, supra note 185, at 63-65. This author considers that the GNU GPL would be enforceable under the doctrine of promissory
estoppel. See Restatement (Second) of Contracts §90 (1981).

215

Wacha, supra note 10, at 475; Carver, supra note 86, at 458.

216

See Microsoft Corp. v. Harmony Computers & Elecs., Inc., 846 F. Supp. 208, 210 (E.D.N.Y. 1994) (Microsoft successfully argued
that it never sells but rather only licenses its products.); see also Adobe Sys., Inc. v. Stargate Software Inc., 216 F. Supp. 2d 1051,
1052 (N.D. Cal. 2002) (“Adobe claims all Adobe software products are subject to a shrink-wrap End User License Agreement
(‘EULA’) that prohibits copying or commercial re-distribution.”).

217

Christian H. Nadan, Software Licensing in the 21st Century: Are Software “Licenses” Really Sales and How Will the Software
Industry Respond?, 32 AIPLA Q.J. 555, 559-60 (2004) (“Today, copyright protection for software is well established. Yet software
developers still license software to address the two considerations highlighted in the introduction--using licensing to defeat the first
sale doctrine and effect price discrimination, and to impose liability-limiting contract terms. Simply put, licensing enables software
owners to maximize the value of their software while minimizing their liability.”); Michael D. Scott, Protecting Software
Transactions Online: The Use of “Clickwrap” Licenses, in 482 First Ann. Internet L. Inst. 101, 103-04 (Practising L. Inst. 1997)
(“Although the enforceability of such agreements has been in doubt for many years, software vendors have continued to use them,
instead of merely relying on the protection provided by copyright law, for a number of reasons: 1. To negate the copyright law
‘first sale doctrine,’ which provides that once a copy of a copyrighted work has been sold, the copyright holder’s rights in that copy
are exhausted, and the copy may be freely resold, leased, rented, lent or otherwise disposed of without the copyright holder’s
consent. 2. To limit[] or disclaim warranties, remedies and liability as permitted by the provisions of the Uniform Commercial
Code (UCC). 3. To impose other limitations on the transaction, such as use limitations on the software, prohibitions on reverse
engineering, choice of law and forum, shortened statute of limitations, export control provisions, etc.”).

218

Terry J. Ilardi, Mass Licensing--Part 1: Shrinkwraps, Clickwraps and Browsewraps, in 831 Pat. & High Tech. Licensing 251, 257
(Practising L. Inst. 2005) (defining the three most remarkable characteristics mass market licenses: “1) Their acceptance is
indicated by some act other then a signature on writing; 2) they are not negotiated but are, rather a ‘take it or leave it’ type of
agreement; and 3) they are intended for use with mass market products or services by a large end user community for which
negotiated licenses would be financially, administratively or otherwise infeasible.”); see Jean Braucher, The Failed Promise of the
UCITA Mass-Market Concept and Its Lessons for Policing of Standard Form Contracts, 7 J. Small & Emerging Bus. L. 393 (2003)
(discussing the mass-market concept under UCITA).

219

Nadan, supra note 30, at 362; TseeT Mark A. Lemley, Shrinkwraps in Cyberspace, Jurimetrics J. 311, 312 (1995).

220

Ilardi, supra note 218, at 256; see Nadan, supra note 30, at 362.

221

Johnson, supra note 196, at 98.

222

Johnson, supra note 196, at 98.

223

Step-Saver Data Sys., Inc. v. Wyse Tech., 939 F.2d 91 (3d Cir. 1991).

224

Id. at 94.

225 Id.

226

Id.

227

Id. at 95-96.

228

Id. at 93.

229

Step-Saver Data Sys., Inc. v. Wyse Tech., 939 F.2d 91, 98 (3d Cir. 1991).

230

Id. at 97.

231

ProCD, Inc. v. Zeidenberg, 86 F.3d 1477, 1449 (7th Cir. 1996).

232

Id. at 1450.

233

Id.

234

Id.

235

Id.

236

Id.

237

ProCD, Inc. v. Zeidenberg, 86 F.3d 1447, 1450 (7th Cir. 1996).

238

Id. at 1451.

239

Id. (discussing, e.g., insurance policies where the policy is received after payment of premium, airline tickets with terms received
after ordering via telephone, etc.)0.

240

I.LAN Sys., Inc. v. Netscout Serv. Level Corp., 183 F. Supp. 2d 328 (D. Mass. 2002) (Chief Justice Young elucidates and
distinguishes both Step-Saver and ProCD and finally adapts the ProCD analysis.).

241

U.C.C. §2-207(2) (1998) (“The additional terms are to be construed as proposals for addition to the contract. Between merchants
such terms become part of the contract unless: (a) the offer expressly limits acceptance to the terms of the offer; (b) they materially
alter it; or (c) notification of objection to them has already been given or is given within a reasonable time after notice of them is
received.”).

242

U.C.C. §2-204 (1998) (“(1) A contract for sale of goods may be made in any manner sufficient to show agreement, including
conduct by both parties which recognizes the existence of such a contract. (2) An agreement sufficient to constitute a contract for
sale may be found even though the moment of its making is undetermined. (3) Even though one or more terms are left open a
contract for sale does not fail for indefiniteness if the parties have intended to make a contract and there is a reasonably certain
basis for giving an appropriate remedy.”).

243

Hill v. Gateway 2000, Inc., 105 F.3d 1147 (7th Cir. 1997); M.A. Mortenson Co., Inc. v. Timberline Software Corp., 998 P.2d 305
(Wash. 2000); Adobe Sys., Inc. v. Stargate Software Inc., 216 F. Supp. 2d 1051 (N.D. Cal. 2002).

244

Klocek v. Gateway, Inc., 104 F. Supp. 2d 1332, 1341 (D. Kan. 2000) (“[I]f either party is not a merchant, additional terms are
proposals for addition to the contract that do not become part of the contract unless the original offeror expressly agrees.”).

245

I.LAN Systems, Inc., 183 F. Supp. 2d at 338.

246

Softman Prods. v. Adobe Sys., Inc., 171 F. Supp. 2d 1075, 1088 (C.D. Cal. 2001) (The court found “that Adobe’s EULA cannot be
valid without assent. Therefore, Softman is not bound by the EULA because it never loaded the software, and therefore never
assented to its terms of use.”).

247

306 F.3d 17 (2d Cir. 2002).

248

Id. at 20.

249

Id. at 32.

250

54 U.S.P.Q.2d 1344 (C.D. Cal. 2000).

251

Id. at 1346.

252

Id.

253

EF Cultural Travel BV v. Zefer Corp., 318 F.3d 58, 63 (1st Cir. 2003).

254

Register.com, Inc. v. Verio, Inc., 356 F.3d 393, 403 (2d Cir. 2004) (“We recognize that contract offers on the Internet often require
the offeree to click on an ‘I agree’ icon But not in all circumstances. While new commerce on the Internet has exposed courts to
many new situations, it has not fundamentally changed the principles of contract. It is standard contract doctrine that when a
benefit is offered subject to stated conditions, and the offeree makes a decision to take the benefit with knowledge of the terms of
the offer, the taking constitutes an acceptance of the terms, which accordingly become binding on the offeree.”).

255

Johnson, supra note 196, at 102 (“It does not seem fair to state that [t]he only thing that is certain when considering the
enforceability of shrink-wrap and click-wrap software licence is that the law is uncertain.”).

256

Ilardi, supra note 218, at 273 (This may be accomplished through a statement in the box displayed in a shop, forcing the offeree to
go through the terms of the license to download the software from a website. It may even be enough to display in a visible place of
the website a link which directs to the terms of the license. A later notice (i.e., when the offeree receives the product) may be
sufficient0.).

257

Nadan, supra note 30, at 362.

258

Ilardi, supra note 218, at 273.

259

Wacha, supra note 10, at 488.

260

Free Software Foundation, GNU General Public License, Version 2 (June 1991), http://www.gnu.org/licenses/gpl.html#SEC4
(providing suggested content of the notice).

261

Id.

262

Id.

263

Id.

264

The only requirement included in the GNU GPL that affects the downstream licensees-licensors states that they must “keep intact
all the notices that refer to this License ... and give any other recipients of the Program a copy of this License along with the
Program.” GNU Project, GNU General Public License, supra note 90, §1.

265

Wacha, supra note 10, at 489-490; see also Terry J. Ilardi, Mass Licensing--Part 2: Open Source Software Licensing, in 831 Pat. &
High Tech. Licensing 279, 287 (Practising L. Inst. 2005).

266

The GNU GPL considers that “by modifying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works
based on it.” GNU Project, GNU General Public License, supra note 90, §5. However, it seems rather dubious that the unilateral
declaration of one of the parties can override the legal effect of shrinkwrap and clickwrap agreements.

267

Nadan, supra note 30, at 362-63.

268

Restatement (Second) of Contracts §211 (1981). In opposition, European countries are more strict with this requisite. See article
5.2 of the Spanish Contractual Standard Terms Act (B.O.E. April 14, 1998, 7 [p. 12304]) (stating that the standard terms will not
be incorporated into the contract unless the offeror has informed the offeree of their existence and has provided him with a copy of
them); see also Bügerliches Gesetzbuch [BGB] [Civil Code] Aug. 18, 1896, as amended Jan. 1, 2002, §305(2) (allowing more
flexibility in only demanding that the offeror inform of the standard terms at the time of contract formation and facilitate the
offeree gaining knowledge of its content in a reasonable way).

269

See Unif. Computer Info. Transactions Act §§209-10 (amended 2002), 7 U.L.A. 208 (Supp. 2006) (listing the provisions for Mass
Market License and Terms of Contract Formed by Conduct). Paradoxically, the Free Software Foundation advocates against the
UCITA. They believe the GNU GPL is not a shrinkwrap or clickwrap license, in opposition to the ones used by proprietary
software companies. Free Software Foundation, Why We Must Fight UCITA (June 30, 2005),
http://www.gnu.org/philosophy/ucita.html.

270

See Unif. Computer Info. Transactions Act §101 (amended 2002), 7 U.L.A. 208 (Supp. 2006) (listing only Maryland and Virginia
in the Table of Jurisdictions Wherein Act Has Been Adopted).

271

Nadan, supra note 30, at 362-67.

272

Rosen, supra note 185, at 54.

273

GNU Project, GNU General Public License, supra note 90, §5.

274

Patrick S. Atiyah, An Introduction to the Law of Contract 356 (5th ed. 1995).

275

“Privity of contract. The relationship between the parties to a contract, allowing them to sue each other but preventing a third party
from doing so.” Black’s Law Dictionary 1237 (8th ed. 2004).

276

G.H. Treitel, The Law of Contract 539-40 (10th ed. 1999).

277

GNU Project, GNU General Public License, supra note 90, §6. Under U.S. law, non-exclusive copyright licenses are personal and
not assignable unless expressly permitted by the license or with permission of the copyright holder: “[copyright licenses] are not
transferable as a matter of law. Under the 1909 Act, ‘Absent any contractual limitations, an assignee [of the whole contract] had
the right to re-assign the work. A licenTseeT, however, had no right to re-sell or sublicense the rights acquired unless he has been
expressly authorized to do so.”’ Harris v. Emus Records Corp., 734 F.2d 1329, 1333 (9th Cir. 1984). Thus, lacking an express
permission in the license, the subsequent licensors will be forced to look for the direct permission of the copyright holder, which
may make the transferability of copyleft software difficult.

278

The copyleft clause “purports to restrict subsequent transferees who receive software from a licenTseeT.... As this new transferee is
not in privity with the original copyleft licensor, the stipulation TseeTms unenforceable.” Robert P. Merges, The End of Friction?
Property Rights and Contract in the “Newtonian” World of On-line Commerce, 12 Berkeley Tech. L.J., 115, 129 (1997).

279

Guenter Treitel, An Outline of The Law of Contract 253-262 (Oxford University Press 6th ed., 2004).

280

Clearwater Constructors, Inc. v. Gutierrez, 626 S.W.2d 789, 791 (Tex. 1981) (citations omitted).

281

It has been also argued that privity considerations have all but disappeared after the introduction of the Uniform Commercial Code
(U.C.C.) and the various state statutes related to the U.C.C. Wacha, supra note 10, at 475.

282

See Black’s Law Dictionary 1238 (8th ed. 2004) (defining the implied warranty and strict liability doctrines).

283

Moglen, supra note 184; Jones, supra note 184.

284

See GNU Project, GNU General Public License, supra note 90, §§11-12.

285

See, e.g., Open Source Initiative, supra note 96.

286

Wacha, supra note 10, at 471. However, Nimmer expresses deep doubts. Nimmer, supra note 86, at 88.

287

U.C.C. §2-314 (2004).

288

U.C.C. §2-104 (2004) (amended 2003).

289

Farnsworth, supra note 192, at 38.

290

Nimmer, supra note 86, at 89.

291

U.C.C. §2-314(2) (2004).

292

GNU Project, GNU General Public License, supra note 90, §11.

293

See GNU Project, GNU General Public License, supra note 90, §§11-12.

294

U.C.C. §2-316(3)(a) (2004).

295

GNU Project, GNU General Public License, supra note 90, §§11-12.

296

Wacha, supra note 10, at 472.

297

See Unif. Computer Info. Transactions Act §406 (amended 2002), 7(2) U.L.A. 208 (Supp. 2006) (discussing the UCITA disclaimer
of modification of warranty).

298

Farnsworth, supra note 192, at 309. This waiver would be also considered void in many jurisdictions around the world, like
Germany. Axel Metzger & Till Jaeger, Open Source Software und deutsches Urheberrecht, 10 GRUR Int, 839, 846-47 (1999).

299

See supra note 291 and accompanying text.

300

See supra note 291.

301

Unif. Computer Info. Transactions Act §410 (amended 2002), 7(2) U.L.A. 208 (Supp. 2006).

302

See discussion supra Part III.B entitled “Contract v. License.” This departure seems to be assumed by the drafters of the UCITA:
“Many such transactions [among contributors to the development of open source software and users] may not involve a contractual
relationship and would, on that basis, fall outside of the scope of this Act.” Unif. Computer Info. Transactions Act §410 cmt.2
(amended 2002), 7(2) U.L.A. 208 (Supp. 2006).

303

Wacha, supra note 10, at 482; Nimmer, supra note 86, at 89.

304

A similar outcome has been reached in the German literature, where the open source software transfer from the programmer to the
end user is considered by some authors as a donation and the liability standard is only met in cases of recklessness or malicious
intent. Metzger & Jaeger, supra note 298, at 847.

305

Lucie Guibault, Pre-emption Issues in the Digital Environment: Can Copyright Limitations be Overridden by Contractual
Agreements under European Law?, in Opstellen over Internationale Transacties en Intellectuele Eigendom, 225-62 (F.W.
Grosheide & K. Boele-Woelki eds., Europees Privaatrecht [11 Molengrafica Series] 1998), available at http://
www.ivir.nl/publications/guibault/article2.doc.

306

See, e.g., Vault Corp. v. Quaid Software Ltd., 847 F.2d 255, 257 (5th Cir. 1988) (quoting Vault’s software license as stating: “You
[the user] may not transfer, decompile, or disassemble the Licensed Software for any purpose without VAULT’s prior written
consent.”). This license sample likely conflicts with the “first-sale” doctrine, the right to make a backup copy, and the right to
reverse engineering. Copyright Act, 17 U.S.C. §§109, 117, 1201(f) (2000).

307

Mark A. Lemley, Beyond Preemption: The Law and Policy of Intellectual Property Licensing, 87 Cal. L. Rev. 111, 136 (1999).

308

For example, “[t]he making of a back-up copy by a person having a right to use the computer program may not be prevented by
contract insofar as it is necessary for that use.” Council Directive on the Legal Protection of Computer Programs91/250/EEC,
art.5.2, 1991 O.J. (L 122) 44 (EC); “[t]he maker of a database which is made available to the public in whatever manner may not
prevent a lawful user of the database from extracting and/or re-utilizing insubstantial parts of its contents, evaluated qualitatively
and/or quantitatively, for any purposes whatsoever.” Council Directive on the Legal Protection of Databases96/9/EC, art.8.1, 1996
O.J. (L 77) 26 (EU).

309

Maureen A. O’Rourke, Drawing the Boundary Between Copyright and Contract: Copyright Preemption of Software License
Terms, 45 Duke L.J. 479, 479 (1995).

310

ProCD, Inc. v. Zeidenberg, 86 F.3d 1447, 1454 (7th Cir. 1996).

311

Pamela Samuelson, Copyright and Freedom of Expression in Historical Perspective, 10 J. Intell. Prop. L. 319, 340-41 (2003).

312

Vault Corp. v. Quaid Software, Ltd., 847 F.2d 255 (5th Cir. 1988). But see Bowers v. Baystate Techs., Inc., 320 F.3d 1317 (Fed.
Cir. 2003).

313

Mark A. Lemley, Intellectual Property and Shrinkwrap Licenses, 68 S. Cal. L. Rev., 1239, 1273 (1995).

314

GNU Project, GNU General Public License, supra note 90, §0 (“any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language.”).

315

Copyright Act, 17 U.S.C. §101 (2000) (“A ‘derivative work’ is a work based upon one or more preexisting works, such as a
translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction,
abridgment, condensation, or any other form in which a work may be recast, transformed, or adapted. A work consisting of
editorial revisions, annotations, elaborations, or other modifications, which, as a whole, represent an original work of authorship, is
a ‘derivative work.”’).

316

See GNU General Public License: Discussion Draft 2 of Version 3, supra note 188, §0.

15 TXIPLJ 157

